Demantoid, green andradite garnet, was discovered in the Central Ural Mountains of Russia in the mid-19th century. A favorite of the Czar's court, demantoid was another victim of the 1917 Bolshevik Revolution, when mining of this and other Russian gems was halted. Today, however, independent miners are recovering notable quantities of stream-worn demantoid pebbles from two main districts: Nizhniy Tagil, about 115 km north, and Sisierssylz, about 75 km south, of Ekaterinburg. As a result, these distinctive bright "golden" green to dark green garnets are re-emerging in the gem market. Although cut stones continue to be small for the most part, a number of fine demantoids over 1 ct have been seen.

Demantoid (Ca$_3$Fe$_2$(SiO$_4$)$_3$) is the chromium-green gem variety of andradite, but it usually exhibits a yellow over-tone due to intrinsic ferric iron. With a hardness slightly less than 7, demantoid is not a good ring stone. However, its high index of refraction (1.89) and dispersion (0.057; diamond is 0.044) make it a gem of great brilliance and fire for other jewelry purposes.

The following account looks at the early history of demantoid as a gem material and its present status with regard to localities, geology, production, and marketing, as demantoid reemerges from virtual obscurity into a promising future. Locality information is based largely on the authors' own experience and knowledge of the Urals region.

ABOUT THE AUTHORS
Dr. Philippe is emeritus professor of geology (Ph.D., Hannover) at Belgium Young University, Paris, and director of the Gem Institute, a division of NEFI Inc., Moscow, Russia. Dr. Talantsev is professor and chief specialist of the Ural Branch of the Russian Academy of Sciences, and president of the Ural Division of the Russian Mineralogical Society, Ekaterinburg, Russia.

Acknowledgments: The authors are indebted to Dr. Max Fischer, president of NEFI Inc., for encouragement and financial support, and to numerous Russian colleagues who have asked to remain anonymous. David W. Hewittson, photographer for the Belgium Young University Museum of Art, prepared several photographs, and the EBU Geology Department allowed access to research equipment. A. Scheler, of A. Le Vile, Russia, New York City, provided jewelry for photography and useful information.
Figure 1. A number of fine demantoids from Russia have appeared in the gem market recently. These unusually large demantoids (1.64-5.40 ct) range from "golden" green to a deep "emerald" green. Stones courtesy of Gebr. Henn, Idar-Oberstein, Germany; photo © GIA and Tina Hammid.

Tagilsk) in the Central Urals (figure 2), found unusual "grass"-green pebbles [probably similar to those shown in figure 3] in the heavy spring runoff of the Bobrovka River [Eichmann, 1870; Samsonov and Turiugue, 1985]. Local jewelers identified the green gem as chrysolite [olivine, (Mg, Fe)2SiO4]—generally known by gemologists as peridot. Mineral collecting was very stylish in late-19th-century Czarist Russia, especially among the nobility, and mineral collectors soon converged on Nizhniy Tagil in search of specimens of this gem. This "Ural chrysolite" [which also was called "Bobrovsk emerald," "Uralian emerald," and "Siberian chrysolite"] soon appeared in the jewelry shops of Moscow and St. Petersburg, mostly as small, fiery calibrated stones framing enamel work or the larger gems of the Urals, such as pink topaz or beryl.

Nils von Nordensheld [also spelled "Nordenskiöld"], a Finnish mineralogist who first gained fame in the Urals with his identification of the new mineral phenakite [Be2SiO4], arrived at Nizhniy Tagil a year after the initial demantoid discovery. He remained for a year and a half studying copper deposits in the area. P.V. Eremeyer (also spelled "Eremeev"), his friend and biographer, suggests that von Nordensheld never visited the actual site where the green stones were found, but rather examined those in several collections. On the basis of these examinations, von Nordensheld declared the green gem a new mineral and certainly not chrysolite.

On February 20, 1864, von Nordensheld described the beautiful green gem before the St. Petersburg Mineralogical Society as green andradite garnet colored by a small chromium content [Eremeye, 1871]. The fact that andradite has the highest R.I. and dispersion of any of the garnets explained the unusual brilliance and fire, and he proposed the name demantoid [i.e., "diamond-like"] for the little "green diamonds" [Clark, 1993,
Figure 2. The main two demantoid localities described in this article are reached by paved and unsurfaced roads from Ekaterinburg, the largest city of the Central Urals in Russia. The northern—Nizhny Tagil (A)—district is near Elizavetinskoye, about 35 km by road southwest of Nizhny Tagil. The southern—Sissertsk (B)—district lies between Poldnevaya and Verlzhniy Ufaley, about 35 km by road south of Poldnevaya. The numbers on the roads represent the number of kilometers between the distance markers (sites).

Itussian Demantoid Garnets p. 176 gives 1878 as the year the term was introduced and first published. The name was accepted subsequently by Russian mineralogists and jewelers, but it was initially rejected by the local people who continued to call it "Ural chrysoberyl," as demantoid sounded too much like a word that was vulgar in the local dialect.

A second discovery was made about 75 km (90 km by road) south of Ekaterinburg in the Sissertsk (also spelled "Syr'yt" and "Syr'sert") District (also referred to as the Poldnevaya District or Poldnevaya District) on the Chusovaya and Chisiovika Rivers of the west slopes of the Ural Mountains. This area produced gems equal, or superior, in quality to those at the first locality (Church), 1879.

Demantoid was very popular in Russia from about 1875 to 1920 (figure 4). It was even incorporated into some of the fabulous creations of Peter Carl Fabergé and other court jewelers. Although most of these gems were used by the Russians, who preferred the brownish or yellow-green stones (R. Schafer, pers. comm., 1996), a few—including the less popular (and less brilliant) intense green gems—were exported to the European market at exorbitant prices. Edward VII of England favored green gems, and demantoid entered the "Belle Epoque" (see cover and figure 5).

Serious efforts have been made to find demantoid deposits in similar geologic environments elsewhere in Russia. In 1980, one was reported at a site in the Kamchatka Peninsula of eastern Siberia. The stones are usually small (2-3 mm), but of good quality. Several deposits of yellow andradite (sometimes referred to as "topazolite," although this term is in
Disfavor with modern gemologists and uvarovite (the chrome analog of andradite) also came to light. Minor occurrences of demantoid also have been reported from Zaire, Korea, Sri Lanka (gem gravels), California (San Benito County, Payne, 1981), and south-central Mexico (Wilson, 1985). Even some stones from the Ala Valley of Italy are green enough to be considered demantoid. Nevertheless, demantoid has largely remained a gem of the Ural Mountains (Samsonov and Tuzinge, 1985). Crystals from all of these other localities are rare, seldom more than a few millimeters, usually very pale, with cut stones over one-quarter carat rare indeed.

With the onset of the Bolshevik Revolution in 1917, gems went out of vogue in Russia, along with other symbols of wealth and royalty, and Soviet resources turned to mineral production more in demand by industry. Localities of emerald and other beryls were mined for their beryllium, diamond was mined for industrial applications, and the tailings piles of chrysoberyl mines were hand-picked for molybdenite. In the early stages of World War II, Joseph Stalin moved the Soviet heavy industry to the Central Urals, away from immediate Nazi invasion. The Urals produced planes, tanks, and guns for a desperate nation; demantoid and other gems for personal adornment seemed unimportant.

Figure 4. Popular in Russian jewelry from 1875 to 1920, demantoids provide a field of green for this antique star brooch manufactured in Russia. Courtesy of A La Vieille Russie, New York City; photo by Nicholas DelRe.

Figure 5. Demantoids were particularly popular in late 19th- and early 20th-century Edwardian jewelry. This yellow-gold and silver 19th-century dragonfly pin is set with two relatively large demantoids—1.30 and 1.03 ct—in the main body, as well as assorted smaller demantoids (2.80 ct total weight) throughout the balance of the piece, together with diamonds and two rubies. Courtesy of the Susan Clark Gallery of Gem Art, Vancouver, BC, Canada.

LOCATION AND ACCESS

Two major districts in the Central Urals Mountains of Russia have historically yielded demantoid garnet: Nizhniy Tagil (along the Bobrovka River) and Sissertsk (near Polevskoy and Poldnevyaya). These regions are alternating dense forest (spruce, pine, aspen and birch) and open meadows, with much of the area marshland (figure 6).

The Nizhniy Tagil district is near the tiny village of Elizavetinskoye, about 115 km north-northwest of Ekaterinburg (figure 7). It is best accessed from there via Nev'yansk and Nizhniy Tagil over paved roads. This district contains two deposits: (1) the placer on the Bobrovka River (Bobrovskaya Placer), which runs for about 2 km through Elizaveninskoye; and (2) a primary, in situ, deposit at the head of the Bobrovka River (Tochilny Kluch), which is the source of the alluvial demantoid. The Sissertsk district lies between Poldnevyaya and Yarkhin-y-Ulaley near the Korkodin railway station, which is about 75 km south-southwest of Ekaterinburg (figure 8). All but 4 km of the road from Ekaterinburg to the site (90 km), via Polevskoy, is
paved. In this district there are two primary, in situ, deposits: at Kladovka (point I in figure 8) and at Korkodin (point II in figure 8). In addition, there are five river placers: Bobrovka (area 1), figure 8, Zyachiy Log ("Hare Creek," area 2), Ulaleyka (area 3), Chruljiska (area 4), and Kamenuchka (area 5). (Note that the Bobrovka area in the Siverskij district should not be confused with the larger Bobrovka River that is in the Nizhniy Tagil district.)

In 1985, a small demantoid deposit was discovered in the southern part of the Arctic Urals on the Hulga River. This new deposit contains both in situ demantoid and a small placer. Crystals are gem quality, relatively large (6-8 mm), and good green color. The site is difficult to reach and has not been studied.

In 1995, another demantoid deposit was reported in the Arctic Urals on the Hadata River. The primary deposit is on the Saum-Kev pyroxenite massif and is accompanied by a placer deposit about 1 km long. It is scheduled for exploration and study in the summer of 1996.

Figure 6. There is no formal mining site at Nizhniy Tagil. Rather, alluvial pebbles of demantoid are recovered from stream beds in a complex of low, mature hills covered by dense forest—largely birch, pine, aspen, and spruce—and, as shown here, open meadows.

Figure 7. Demantoid was first discovered in gravels of the Bobrovka River near the small settlement of Elisavetovskoye, in what is now called the Nizhniy Tagil district. Primary crystals are also recovered from the peridotite intrusion north of the village, at Tochilny Kluch, where the demantoid forms in thin chrysotile veins in serpentinitized pyroxenites.

GEOL OGY AND OCCURRENCE
In the Central Urals, primary deposits of demantoid crystals occur in both major districts, as shown in figures 7 and 8. At Nizhniy Tagil, serpentine lenses about 1.5 km long by 200-300 m wide occur within ultramatic (pyroxenite-peridotite) intrusions, and are cut by veins of coarse-grained olivine (chrysolite) and minor dolomite. At Tochilny Kluch ("Creek"), the demantoid crystals appear to form around tiny grains of chromite in the highly fractured contact zones between chrysotile veins and serpentine. Ultramatic rocks—such as peridotite, pyroxenite, and their altered products, serpenite—usually contain high concentrations of chromium and are the source both of chromite (FeCr₂O₄) and of the chromium for a plethora of
Cr-bearing minerals, including emerald, alexandrite, and demantoid.

Because demantoid crystals are relatively soft and brittle, they will not withstand the rigors of extensive stream transportation. Alluvial pebbles of demantoid (again, see figure 3) are found largely in the sandy gravels of the shallow headwaters of small streams fed by large springs (Kaminskoy and Turinge, 1985). Demantoid in the Nizhniy Tagil district is recovered from Pleistocene river gravels cut by the active Bobrovnka River; the principal deposit measures about 500 m along the river valley and is 20 to 100 m wide (again, see figure 7).

The productive sandy, red gravels (sand-size to gravel-size grains and pebbles of the available rock types, stained red by iron oxides from the weathering of the iron-rich rocks) are as much as 2.5 m thick. They lie on an eroded surface of Paleozoic volcano-sediments, and are covered by several meters of detritus and soil. The best horizons are near the base of ancient terraces; these may contain 100 g of demantoid per cubic meter, 80% of which are pebbles of 4 mm or less. A second deposit on the Bobrovnka (also within the placer area marked in figure 7) is even larger (2.5 km by 50-60 m); much of the Pleistocene sand and gravel lies below the present stream cut and may reach a total thickness of 6 m. Only the modern river bed has been exploited for demantoid crystals, which are poorly formed dodecahedra (1.10) and may reach 5-6 cm, although such large crystals are very rare.

The geology and deposits of the Sissertsk [Poldnevaya] district are similar to those of Nizhniy Tagil (again, see figure 8). At both primary deposits, demantoid occurs in thin (1.5–2 cm) chrysotile veins in serpentinized pyroxenites. Thus far, these primary sites have produced only mineral specimens. In all of the five placer deposits, demantoid is recovered from the lowest gravel bed (the basal bed), with minor amounts from sand bars.

MINING AND PRODUCTION

Mining specifically for demantoid in Russia has been very erratic. Before 1915, the stones were usually obtained as a by-product of platinum mining of the placers at Elizavetinskoye and gold mining of the placers in the Sissertsk district. Since then, the demantoid deposits have been worked mostly by private miners (figure 9), operating illegally, who search river gravels or dig pits up to 5 m deep and then wash and screen the pit gravels. Only the contract companies have licenses to dig, and even those may be for exploration only. Illegal digging is a dangerous profession, as the authorities are always alert and local competition is keen. Miners have been subject to arrests, threats, and even shootings.

In the 1970s, government geologists studied the Nizhniy Tagil–Elizavetinskoye deposits for commercial development, and for three to five years thereafter, the AO Uralquartzsamotsvety (“Ural-quartz-colored stones” Company) attempted hydraulic mining. Recovery was poor (40%-60%), and much high-quality rough was lost in the tail
ings. However, most of the demantoid was ultimately recovered by the local people, who work over every dump and tailings pile.

A very crude estimate would suggest that, prior to 1990, a total of perhaps 200 kg of demantoid rough had been mined; the total remaining commercial reserve of the Elizavetinskoye placers has been estimated at 2,000–3,000 kg. In 1993, the deposit was licensed to a metallurgical company (AO NTMK [Nizhniy Tagil Metallurgical Kombinat]) for prospecting, but no commercial production has resulted. The license expires in 1997, and the company is desperately seeking foreign financing.

The Korkodin-Chrisolitza deposit was explored in the late 1980s, and a license was purchased by a private conglomerate (TOO “Granit”) from the Chelyabinsk region. A production company was formed, and some small-scale organized mining began in 1994, however, no commercial production has yet been reported. Reserves at the Korkodin-Chrisolitza deposit are estimated at 5,000 kg.

The Kamenuschka deposit, about 5 km north of Korkodin, is unexplored, unlicensed, and remains available for development. Trenches cut by “bandit diggers” expose the bedrock and reveal demantoid in drusy cavities, which are valued both for jewelry and as mineral specimens. No commercial production has been officially reported, and the

Figure 10. These five stones (0.24–0.35 ct) were selected from a collection of about 50 small cut stones to represent the range of demantoid colors. On the basis of qualitative EDXRF analysis, the bright green stone on the far left contains much more chromium than any of the others, and the near-colorless stone on the far right contains much less. The three center stones all have about the same chromium content, between that of the previous two samples. By comparison, a medium-green tsavonte garnet analyzed revealed more chromium than all but the brightest green demantoid here, but it also had 10 to 100 times more vanadium than chromium. Photo by David W. Hawkinson, BYU Museum of Art.

reserves at the Kamenuschka deposit are estimated at roughly 2,000–3,000 kg.

Unofficial estimates place total demantoid rough production for 1995 at about 8 kg (Elizavetinskoye—5 kg, Poldnevaya—3 kg). About 40% of this total, some 16,000 carats, is recovered as cut stones. Less than 10% of the latter group, about 1,600 carats, is represented by stones of one carat or more.

Little more can be said at this time about the present status or future development of demantoid garnet in the Urals Mountains of Russia, except that interest is growing, foreign investors are welcome, and proposals to develop the deposits are under consideration. However, all of the areas containing demantoid, except Korkodin, supply drinking water to local cities, so the serious development of any one of them could become an environmental concern.

MATERIALS AND METHODS

The senior author selected from his collection of about 50 Russian demantoids five small cut stones (0.24 to 0.35 ct.) that ranged from the deepest green
to almost colorless (figure 10). In addition, for comparative spectral analysis he included one yellowish brown andradite from Coyote Front Range, Inyo, California; one medium green tsavorite from east Africa; and one colorless grossular from Wakefield, Canada.

Qualitative energy-dispersive X-ray fluorescence (EDXRF) analysis was performed on these samples at Brigham Young University, solely to determine the presence or absence of chromium in the five samples. The UV-visible spectra were obtained by the senior author with a Hewlett-Packard HP8452A diode array spectrophotometer, also at BYU, on one medium green demantoid as well as on each of the tsavorite, andradite, and grossular samples described above. Details of analyses are available on request from the senior author.

DESCRIPTION OF THE DEMANTOIDS

Demantoid garnet is gem-quality green andradite ($\text{Ca}_3\text{Fe}_2\text{Si}_3\text{O}_9$), usually very near the ideal andradite composition, 97.02 wt. % to 99.67 wt. % andradite (Stockton and Manson, 1985), with minor chromium contributing the valued green color, and traces of aluminium, titanium, vanadium, and sometimes manganese. Demantoid ranges from yellowish or brownish green to "golden" green (figure 11), and—the rarest—"emerald" green (again, see figure 1). The gemological properties are consistent with those for other garnets (see table A-1 in Box A), with the exception of the unusually high R.I. (1.89) and dispersion (0.57). As noted earlier, for the most part demantoids are small, less than 1 ct. Although the authors have heard of at least one faceted stone over 21 ct (S. Fesenko, pers. comm., 1996), this is extraordinarily rare.

Figure 11. One of the most distinctive demantoid colors is this bright yellowish or "golden" green color. These two Russian demantoids, 1.36 ct. (round brilliant) and 1.08 ct., are courtesy of Meyer & Watt, Maysville, Kentucky. Photo © GIA and Tino Hammid.

Causes of Color.

Cr^{3+} substitution for Fe^{3+} in octahedral Y sites (again, see Box A) is responsible for the rich "grass" green of demantoid, which is superimposed over the yellow overtone contributed by the intrinsic ferric iron of andradite (figure 12). Cr-bearing demantoid shows red through the
BOX A: Demantoid’s Place in the Garnet Group

The general formula for the garnet group is $X_3Y_2SiO_12$, where X = divalent ions with eightfold coordination, primarily Ca$^{2+}$, Mg$^{2+}$, Fe$^{2+}$, and Mn$^{2+}$, and Y = trivalent ions with sixfold coordination, primarily Al$^{3+}$, Fe$^{3+}$, and Cr$^{3+}$. Rare cases combine X and Y elements to form real garnets depending on the availability of elements and the pressure and temperature of formation, if liquid, to form a pure, end-member garnet (i.e., one in which only one [or occasionally two] end-member ions occupy the X site and one the Y site). Within the garnet group, the six most important end-members, grouped by series, are (1) pyrope [$Ca_3Al_2Si_3O_12$] and almandine [$Ca_3Fe_2Si_3O_12$]; (2) grossular [$Ca_3Al_2Si_3O_12$] and andradite [$Ca_3Fe_2Si_3O_12$]; and (3) uvarovite [$Mg_3Al_2Si_3O_12$] and spessartine [$Mg_3Mn_2Si_3O_12$]. Recently, a seventh end-member garnet species in the Ca series, gedrite [$Ca_3Ti_2Si_3O_12$], has gained significance for gemologists, as it forms solid solutions with grossular to produce tsavorite.

Demantoid is an andradite garnet. Complete solid solution is possible between grossular and andradite, and individual members of this series (notably, demantoid) may contain minor CaO$^2_-$ in partial solution with uvarovite, their uncommon analog.
The green gem varieties tsavorite and demantoid birth the near the ideal end-member compositions, respectively, of grossular and andradite (Stockton and Manson, 1985). However, intermediate (yellow, not Green) grossular-andradite gems recently have been noted (Harwit et al., 1994; Johnson et al., 1995). Selected optical and physical properties of garnets in the Ca series are presented in Table 6. The individual species, and their relationship to demantoid, are discussed below.

Andradite forms a complete solid solution with grossular, and intermediate compositions are common (Stockton and Manson, 1985; Griffith, 1992); however, gem-quality specimens of both andradite and grossular occur, in nature, usually with compositions near their ideal and endmembers. Andradite is intrinsically colored as a consequence of ferric iron (Fe$^{3+}$) in sixfold coordination (Y site), which produces yellow (Loefller and Burns, 1976). Yellow or yellow-green andradite gems (once referred to as “topazolite,” a term now in disfavor) are attractive but rare (Gill, 1978; Webster, 1983). Demantoid results when Cr$^{3+}$ from solid solution with uvarovite substitutes for Fe$^{2+}$ in the Y sites and superimposes a green color over the intrinsic yellow.

Schorl [Fe$_3$Al$_2$Si$_3$O$_12$] is a black garnet colored by Ti$^{3+}$ and Mn$^{2+}$ in combination with intrinsic ferric iron (Phillips and Griffin, 1981) that occurs in solid solution with andradite to yield “melasites,” a Turkish black andradite. These black garnets have little gem application except in mounting jewelry, which was popular with the late Victorians, as an alternative to jet or black onyx.

Uvarovite is a beautiful green garnet in small sizes, with larger stones so dark as to appear almost one in the blue and violet wavelengths, with lesser absorption in the orange and yellow range—and transmit green and red wavelengths. Also evident in Figure 12, the tsavorite showed strong absorption peaks at 426 and 684 nm, which are attributed largely to V$^{3+}$ modified by lesser Cr$^{3+}$. Unfortunately, the two vanadium absorption peaks almost coincide with the chromium absorption doublet (Loefller and Burns, 1976); the slight shoulder on the right side of the 426 nm peak and the asymmetry of the 684 nm peak may be due to chromium. The transmission valley is centered on green. Demantoid typically shows very sharp, strong absorption at 438 nm (blue-violet) and weak absorption at about 594 nm (orange), these represent the characteristic absorption of Cr$^{3+}$, which normally consists of two strong absorption peaks (Loefller and Burns, 1976). The ferric iron (Fe$^{3+}$) inherent to andradite amplifies the 438 nm chromium peak in demantoid and, when Cr$^{3+}$ is minor,

Chelsea filter in proportion to the amount of chromium present. It typically shows no color zoning; however, the color is patchy (i.e., not homogeneous), and the senior author has observed intense asymmetry of the 608 nm peak may be due to chromium. Inherent to andradite amplifies the 438 nm chromiu1 peak in demantoid and, when Cr$^{3+}$ is minor,
Table A-1. Selected properties of garnets in the clorandite (uvarovite-grossular-andradite) series.

<table>
<thead>
<tr>
<th>Garnet species/ gem variety</th>
<th>R.I.</th>
<th>S.G.</th>
<th>Hardness Dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andradite</td>
<td>1.860-1.886</td>
<td>3.77-3.88</td>
<td>6% A 0.057</td>
</tr>
<tr>
<td>Demantoid</td>
<td>1.890-1.899</td>
<td>3.90-3.98</td>
<td>6% A 0.057</td>
</tr>
<tr>
<td>Uvarovite</td>
<td>1.760-1.768</td>
<td>3.91-3.98</td>
<td>7% A 0.039</td>
</tr>
<tr>
<td>Grossular</td>
<td>1.731-1.760</td>
<td>3.40-3.78</td>
<td>7% A 0.028</td>
</tr>
<tr>
<td>Tsavorite</td>
<td>1.739-1.744</td>
<td>3.57-3.65</td>
<td>7% A 0.028</td>
</tr>
<tr>
<td>Goldmanite</td>
<td>1.821</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>Intermediate (Malal)</td>
<td>1.752-1.782</td>
<td>3.63-3.75</td>
<td></td>
</tr>
</tbody>
</table>

From Rouse (1968).
**From Moench and Meyrowitz (1964).*
^Calculated value from McConnell (1964).
"From Johnson et al. (1995).*
From Stockman and Manson (1985).

Garnet is colorless when pure, the addition of transition-element impurities (Fe²⁺, Mn²⁺, Cr³⁺, V⁵⁺) produces a wide variety of colors. For example, the besantite variety (colored by Fe²⁺) ranges from brownish yellow to orange-red, and manganese varieties are pink.

Demantoid transmits essentially all colors except violet. As the Cr³⁺ content increases, the absorption peak at 594 nm becomes higher and broader, absorbing orange and most of the yellow and red wavelengths. A similarly enlarged peak at 438 nm may absorb more short wavelengths, so that green wave-lengths are transmitted. Thus, Cr-rich demantoid may be "emerald" green without any modifying hue. A third high-energy Cr³⁺ absorption in the ultraviolet may be responsible for the red fluorescence of most Cr-colored gems.

Internal Features. The most distinctive internal feature of demantoid is its characteristic "horse-tail" inclusion (again, see figure 13) which was present, whole or in part, in most of the Russian demantoids examined by the authors and which is found in no other green garnet. In the gemological literature, the "horsetail" generally is referred to as hair-like byssolite (an obsolete name for amphibole, usually of actinolite-tremolite composition) fibers that diverge from a focal point, usually a tiny opaque crystal of a spinel-group mineral, probably chrome or magnesiochromite.

Recently, however, the horsetail fibers emanating from the chrome garnets have been identified as serpentine (chrysotile) by Dr. Peretti (pers. comm., 1996). Sometimes the fibers form a dense, eye-visible bundle (figure 14) or cone stained orange or brown by ferric oxide. Each demantoid crystal appears to nucleate on the tiny chrome crystal that also serves as a nucleation point for the serpentine "horsetail," so the demantoid and serpentine fibers must grow simultaneously. As the crystals are small, seldom large enough to cut more than one gem, each cut gem is likely to contain one horsetail, or the part thereof not removed by cut-

Black. It occurs mostly as drusy layers of tiny dodecahedral crystals in fractures in chromite. It is sometimes used for jewelry, showing tiny, bright green scintillation points. Uvarovite is typically associated directly with chromite spinel (FeCr₂O₄).

Demantoid is a dark green to brownish green garnet that is much rarer (and much less attractive) than any of the other Ca garnets. It was first described in 1964 (Moench and Meyrowitz) from specimens found in Laguna, New Mexico, where it derives from the contact metamorphism of a uranium-vanadium ore deposit in a sandstone-limestone host rock.
The most distinctive internal feature of demantoids is the “horsetail” of fibrous serpentine (chrysotile) that is present, in whole or in part, in most pebbles or cut gems. Note the tiny crystal (probably chromite) from which all the fibers radiate. Photomicrograph by John I. Koivula; magnified 20x.

In the authors’ experience, cut specimens lacking all traces of a horsetail are exceedingly scarce. Rarely, the fibers are uniform and parallel, and the gem may be cut to show chatoyancy (“Cat’s-eye demantoid," 1960). Some of the demantoids that have emerged most recently on the international gem market contain randomly oriented acicular inclusions that do not appear to be related to a “horsetail” (figure 15).

MARKETING AND DISTRIBUTION

Because of its extreme rarity, the small size of the crystals, and its relatively low hardness, demantoid has not enjoyed widespread recognition outside Russia. It was popular in the Western world for a brief period during the Edwardian age at the turn of the century, but it slipped back into relative obscurity after World War I, when little emerged from the young Soviet Union. Many of the demantoids seen in the market today are set in estate jewelry from the Edwardian period. Typically, demantoids appeared in Edwardian jewelry as a field of green melee or as an encircling band of melee or calibrated stones highlighting a much larger central stone. They also appeared in whimsical jewelry of the era, as bright green frogs, lizards, snakes, dragonflies (again, see figure 5), and the like (Misiorowski and Hays, 1993, p. 164).

Much of the modern production represents the secret caches of villagers and the work of “bandit diggers.” Each team of “thieves” has its own lapidaries, who cut all the rough in some corner of a small apartment in Ekaterinburg. Many stones are poorly cut, although some fine ones are produced. Unfortunately, many are slightly scratched or chipped in handling. Essentially no rough demantoid appeared in the Russian “gem fairs” in 1995, and very little rough reaches the outside market. Although many cut stones (about 15%-20%) are sold in Russia, where there is historic appreciation, the bulk of present production goes “informally” abroad, most of it to Germany with lesser amounts finding their way to Israel, the United States, the United Arab Emirates, Spain, Italy, and Canada. The authors’ experience is that German dealers, like most Russians, tend to prefer the pale “golden green” stones that best display demantoid’s inher-

Figure 14. In some demantoids, like this recently mined stone, the “horsetail” takes the form of a cone-like bundle of fibers. Photomicrograph by Shane F. McClure; magnified 20x.

Much of the modern production represents the secret caches of villagers and the work of “bandit diggers.” Each team of “thieves” has its own lapidaries, who cut all the rough in some corner of a small apartment in Ekaterinburg. Many stones are poorly cut, although some fine ones are produced. Unfortunately, many are slightly scratched or chipped in handling. Essentially no rough demantoid appeared in the Russian “gem fairs” in 1995, and very little rough reaches the outside market. Although many cut stones (about 15%-20%) are sold in Russia, where there is historic appreciation, the bulk of present production goes “informally” abroad, most of it to Germany with lesser amounts finding their way to Israel, the United States, the United Arab Emirates, Spain, Italy, and Canada. The authors’ experience is that German dealers, like most Russians, tend to prefer the pale “golden green” stones that best display demantoid’s inher-

Figure 15. In some of the newer demantoids to emerge from Russia (see, for example, figure 1), large quantities of randomly oriented acicular inclusions are found throughout the cut stones, with no evidence of a nucleating crystal. Photomicrograph by Shane F. McClure; magnified 20x.
Russian Demantoid Garnets

REFERENCES

Elzaterinburg; each of these districts has two or more alluvial or in situ deposits. All of the localities appear to have significant reserves, as to date there has been no systematic or sustained mining of this gem material. Although two deposits are presently leased to Russian companies by the Russian government, neither provides a significant, continuous, or dependable supply of demantoid rough. Neither company has the finances to develop the properties they hold, and they are currently seeking for-eign investment. The Kazanelschik deposit is of special interest, as it yields stones of the most desirable color and presently is not licensed. Unauthorized recovery from river gravels by illegal miners provides most of the present production; unfortunately, there are no reliable statistics for demantoid production—historic or recent—from this area.

In the next few years, the Russian government is likely to assume control of the production, cutting, and distribution of demantoid, as it has recently done with emerald and alexandrite. Demantoid may also be declared a gem of the "first group," which would put it in the company of diamond, emerald, ruby, sapphire, and alexandrite and thus result in more stringent purchase and export regulations. Political and economic stability in Russia may bring about the development of these world-class deposits. Until then, demantoid will remain a rare and costly gemstone, sought primarily by wealthy collectors and those with a taste for the exotic.