A new transparent, gem-quality green zoisite has been discovered in the Merelani Hills of mineral-rich Tanzania. The gemological properties are identical to those known for violetish blue tanzanite. The main differences are the pleochroic colors and the presence of chromium lines in the absorption spectrum of the green material. Chemical analyses demonstrated the presence of varying amounts of chromium and vanadium relative to the saturation of green.

ABOUT THE AUTHORS

Dr. Barot, managing director of Ruby Centre, Naivasha, Kenya, is a gemologist who specializes in gemstones of East Africa, gemmore, formerly with the Gübelin Gemmological Laboratory in Lucerne, Switzerland, is a gemologist and gemologist with Palm International in Fairfield, California.

Acknowledgments: The authors thank Dr. A. Peetham, of the Gübelin Gemmological Laboratory, and Prof. W. B. Shrim, of the University of Basel, for preliminary research that led to the revision of this article; Paul Carpenter, of the California Institute of Technology, for the microprobe analysis; William Longin, Joan Hill, and Gabriela Matties, of Palm International, for helpful comments; Naivasha Mines for research help; and Robert E. Eame and Robert C. Evanich, of the Gub Gem Trade Laboratory, for their generous assistance. Special thanks to Dr. H. M. Knipp for his guidance in Tanzania.

Tanzania has produced fine gems for most of the last century, but the past three decades have brought exceptional finds of both known and new gem materials. These discoveries include transparent green grossular garnet (tsavorite), violetish blue zoisite (tanzanite), "chrome" tourmaline, and ruby, as well as gemstones and sapphires in a wide range of colors. The latest (first seen by the authors in February 1991) is a green gem-quality variety of zoisite (figure 1). This green stone exhibits the basic chemical, physical, and optical properties characteristic of zoisite; only the trichroic colors and chromogens are different from those of the well-known violetish blue to violet tanzanite.

Several names have been proposed for this new gem. Local miners first called it Combat, because it resembled the green of some military uniforms. Gübelin it was proposed to the 1991 International Colored Gemstone Association (ICA) congress in honor of Dr. Edward Gübelin's contributions to the industry. Mineralogists prefer to call this material green zoisite, while many American dealers have adopted the term chrome tanzanite, in reference to the presence of chromium as the apparent coloring element (on the basis of preliminary research performed by the second author while at the Gübelin Gemmological Laboratory [Barot and Boehm, 1991]; further research has shown that the yellowish green to bluish green stones are colored by varying amounts of chromium and vanadium). For the purposes of this article, the authors will use the name green tanzanite, which is the one preferred by the Tanzanian Ministry of Water, Energy and Minerals (A. S. Zultu, pers. comm., 1992). Their proposal is based on the use of tanzanite for the gem variety of zoisite, in the same manner that sapphire is a gem variety of corundum. We hope, for the sake of this and other new gem materials, that an internationally recognized gemstone nomenclature committee will soon designate an official name.

Until 1991, zoisite occurred in Tanzania in only two varieties of interest to the gem trade. The most important has
been the gem-quality violetish blue tanzanite, which is colored by vanadium (Schmetzer, 1978). Most of these stones have a strong brown component that is removed by heat treatment. Some greenish blue stones have been found, but the color changes to blue after heat treatment (Schmetzer and Bank, 1978–79). The other gem zoisite from Tanzania is a massive opaque green variety, colored by chromium (Game, 1954; Schmetzer, 1982). This aggregate of zoisite and hornblende is called anyolite in the trade (Gübelin, 1959), based on the word meaning green in native Masai. When associated with opaque ruby, it is known as ruby in zoisite (figure 2). Both anyolite and ruby in zoisite have been used extensively as carving materials. Although thulite—a massive, opaque, pink variety of zoisite colored by manganese—has been found in Norway, western Australia, Italy, Austria, the U.S.A. (Wyoming), and South Africa (Schumann, 1977), as well as Switzerland (Abericht, 1981), only a few random pieces of transparent gem-quality pink zoisite have been found in Tanzania. A few pieces of transparent yellow tanzanite have also been seen from Merelani (W. Larson, pers. comm., 1992). While a few pieces of transparent green tanzanite have appeared sporadically over the last 10 years, the recent find represents the first discovery of significant amounts of this material (H. Krupp, pers. comm., 1992).

This article reviews the occurrence and geological properties of this new gem-quality green tanzanite, investigates the cause of color, and examines the effect of heat treatment on the different hues that have emerged to date. Although relatively small numbers of green tanzanite have been found thus far, this new discovery represents an important development in our understanding of zoisite and its potential as a gem species.

LOCATION AND ACCESS

The only location known to produce any notable quantity of transparent gem-quality zoisite (tanzanite) is in the Merelani Hills of Tanzania. Minor occurrences have been reported at Lelaterra in Tanzania, and at Luseney and Lilani in Kenya (Naeser and Saul, 1974; Pohl and Niedermayer, 1978). Dr. John Saul has also reported minor occurrences of tanzanite in the Uluguru mountain range just south of Morogoro in
Tanzania (23rd International Gemological Conference, South Africa, 1991). To date, green tanzanite has been found only at Merelani. Merelani (3°30’S-37°00’E; Keller, in press) is a hilly region situated south of the Kikuletwa River, 24 km from the Kilimanjaro International Airport near the town of Arusha (figure 3). The area received its name from the mererani tree, which is common to the region. The closest town is Mbuguni, also known by the locals as Zaire; it is presently closed to foreign visitors (H. Krupp, pers. comm., 1991).

The tanzanite deposit at Merelani was first discovered in 1967 (Bruce, 1968). Although the general mining area has grown, it is still relatively small, approximately 5 km long × 1 km wide. To promote more organized, sophisticated mining in the area, the Tanzanian government recently divided it into four sections (Blocks A-D; again, see figure 3) that are mined independently but under government supervision (H. Krupp, pers. comm., 1991). The green tanzanite is reportedly being found in Block B, a site 845 m × 1,150 m that is held by Building Utilities Ltd. Rehabilitation (A. Suleman, as reported in Koivula and Kaminerling, 1991). Approximately 7,000 local miners currently work the tanzanite mines (Daily News-Tanzania, November 30, 1991), down from the 35,000 estimated to have worked the 5 km² area before government intervention in early 1991.

As in most gem-mining areas worldwide, there are no paved roads leading into Merelani; consequently, access is often impossible during the rainy season (late April through June). Despite hazardous conditions often caused by flooding and cave-ins during heavy rainfall, mining usually continues year-round.

To reach Merelani after exiting the main paved road running between the airport and Arusha, one must drive south of Cairo and Zaire (Mbuguni) to the base of the hills. Access to the actual mining area in the hills is even more difficult, although it is a distance of less than 500 m. Travel in this region is best done by four-wheel-drive vehicle or by cross-country motorbike, but occasionally one sees a miner on a bicycle struggling to avoid the large ruts eroded in the dirt road.

Government permission must be obtained to gain admission to the mining area. For the most part, foreign visitors are not welcome by local miners. Mining rights are by government approval only.

GEOLOGY AND OCCURRENCE
Zoisite, a species of the epidote group, is an orthorhombic polymorph of clinozoisite that forms under conditions of regional metamorphism (Hurlbut and Klein, 1977). The Merelani gem belt is located in the center of the Great Rift Valley region, which has undergone extensive regional metamorphism. Although some alluvial material has been found in low-lying areas and ancient streambeds, most violetish blue tanzanite occurs in fault zones (thrust planes) within outcrops of graphitic gneisses and schists. According to Malisa et al. (1986) and Malisa and Muhongo (1990), the primary deposits are located at the crest of the large Lelatema fold.

Mineralization of the zoisite is believed to have occurred some 600 million years ago, after the main phase of the Pan-African tectonothermal event and before the Rift Valley movements. During the
To date, transparent green tanzanite has been found only in Block B of the tanzanite-mining region of the Merelani Hills of Tanzania. The inset (courtesy of A. Suleman) shows the four new blocks, A–D, and the companies that hold the leases on each.

Artwork by Carol Silver.

Tectonothermal event, in which great variations in temperature occurred, zoisite, together with other silicates, carbonates, and clay minerals, crystallized from hot hydrothermal solutions that traveled through faults and fissures. The gneisses subsequently endured numerous stages of folding during regional tectonic activity (Malisa et al., 1986).

The authors speculate that the new, green tanzanite was formed under basically the same geologic conditions as the violetish blue variety, but within deeper, chromium-rich veins. This theory is partly substantiated by the fact that the green tanzanite is being found at greater depths as the miners continue to work downward (pers. comm. with miners, April 1991). Those stones that are yellowish green or bluish green in color—and, therefore, contain varying amounts of chromium—may have occurred in the zone between the shallower, vanadium-rich veins that host the violetish blue tanzanite and the deeper, chromium-rich veins that contain “pure” green tanzanite.

It is worth noting that green grossular garnet (tsavorite), which is chemically similar to zoisite (also a calcium aluminum silicate and colored by vanadium but of a structurally different crystal system), is found throughout this region (P. Keller, pers. comm., 1992). Notable sizes of gem-quality tsavorite have been discovered in Block D, formerly known as the Karo pit (Kane et al., 1990).

MINING AND PRODUCTION

Violetish blue tanzanite was first mined by the open-pit method, now, more than 90% of mining is underground (Kane et al., 1990). The gem-quality green tanzanite was discovered in one of the deeper tunnels, at approximately 70 m below the surface. Although the government has assigned the new mining rights to encourage more organized, sophisticated mining, to date there is virtually no heavy equipment at the mines.

The miners rely on dynamite to penetrate the gneisses and schists in which the gem crystals are.
found. After blasting, they remove the loose rocks to the surface, tossing them from one miner to the next (Figure 4). They then look for pockets of crystals in the newly exposed walls. The miners use picks and shovels to extract the gem crystals from the host rock (Figure 5), depending on handmade kerosene lamps for illumination.

During a visit to the Merelani area in April and May 1991, one of the authors [EB] observed that few of the miners wore shoes and there was virtually no protective gear. Nor were there support structures to prevent cave-ins. Access to some of the tunnels was by rope, but only a few ropes served the complex maze. Many miners willingly risked their lives daily in pursuit of the valuable gems just to be able to buy necessities; most lived in thatched huts with mud walls and dirt floors. With the government’s reorganization of the mining area, however, conditions should improve.

For the most part, the miners are “independent,” but they report to the concerns that hold the leases on the various blocks. Virtually all of the gem material found is sold in rough form through the leaseholders, who have been issued a Master Dealer’s license by the Tanzanian government.

The authors estimate that 1,000 grams of green tanzanite have entered the market to date, producing approximately 500-800 faceted gems. Although most of the rough is broken, some well-formed crystals have emerged (Figure 6). The crystals seen thus far are typical for tanzanite, an orthorhombic mineral, although the terminations tend to be acute. Production is currently very low (down to 10-20 stones per month). Of the stones available, only approximately 30% are pure green (with no noticeable modifier), while another 30% are bluish green and the remaining 40% are brownish green to yellowish green. The largest piece of rough known is a heavily included dark green crystal of 19 grams (again, see Figure 6), while the largest cut stone seen thus far is a 15.61-ct triangular shape. One of the finest gems seen is the 11.23-ct cushion cut shown in Figure 7.

MATERIALS AND METHODS

For this report, the authors examined more than 30 faceted dark green to medium brownish green to light yellowish green zoisites, ranging in weight from 1.06 to 5.86 ct, and 40 crystals, varying in color from dark green to medium brownish green to light yellowish green.
green to light yellowish green and ranging in weight from 0.5 to 4.0 grams. All of the 70 research stones were submitted to a variety of gemological tests. Refractive indices were recorded with a GIA Duplex II refractometer; specific gravity was measured on a Mettler hydrostatic electronic scale and by heavy liquids; long- and short-wave ultraviolet luminescence was determined using a USVL-15 Mineralight (handheld); and absorption spectra were recorded on a Beck prism spectroscope and a GIA GEM handheld diffraction-grating spectroscope.

Ten of the sample stones (1.06-4.25 ct), one 4.65 ct medium blue tanzanite, and one 3.70 ct violetish blue tanzanite (figure 8) were also chemically analyzed by Paul Carpenter, of the California Institute of Technology, using a JEOL 733 electron microprobe with corrections based on Armstrong (1982, 1988).

The heat-treatment experiments were performed by the senior author in Nairobi, Kenya, using a Kasernan and Speriserl (Biel-Bienne, Switzerland) electric oven with a temperature/time system that provides a maximum temperature capacity of 1200°C from an electricity supply of 200 volts. A total of 40 gem-quality rough zoisites that showed green on at least one axis were selected and divided into five groups on the basis of their trichroic colors. The samples were sawed in half, with one half retained as a control while the other half was subjected to heat treatment. The halves to be treated were tightly packed in a plaster-of-paris powder and then placed in a crucible. The temperature of the oven was gradually raised to 650°C, over the course of approximately 30 minutes, and then was maintained at 650°C for an additional half hour. At this point, the oven was allowed to cool down naturally for about six hours. The samples were then removed from the crucible and compared to their untreated counterparts. Pleochroic colors were noted as observed down the three crystallographic axes with unpolarized light.

GEMOLOGY

Most of the gemological properties of gem-quality green tanzanite overlap those already known for the violetish blue variety (table 1). However, there are some differences and similarities worth noting. Specifically, the refractive indices, birefringence, and specific gravity of green tanzanite are essentially identical to those of the violetish blue variety, but the pleochroism and spectra are quite different (see Baniz, 1969; Hurlbut, 1969; Strunz, 1968). Green tanzanite typically exhibits trichroism of \(a = \text{greenish yellow to yellowish brown}, b = \text{yellowish green}, \) and \(c = \text{bluish green to brownish green} \) as compared to \(a = \text{violetish blue}, b = \text{blue to bluish green}, \) and \(c = \text{brownish green} \).
violet blue, b = violet, and c = brownish red, respectively, for typical violetish blue tanzanite). The stones we tested showed weak to moderate chromium absorption bands at 660 and 680 nm, which are not found in other colors of transparent tanzanite. Note that these spectral features might not be visible with a hand spectroscope in smaller and/or paler stones.

Faceted violetish blue tanzanites tend to be flawless, because most inclusions that could fracture the stones (due to varying thermal expansion) during heat treatment are removed in the cutting process. However, the following have been identified petrographically as inclusions in zoisite: rutile, sphene, xenotime, diopside, quartz, and tremolite (Malisa et al., 1986). In 1975, using X-ray diffraction analysis, Dunn identified black mineral inclusions that had first been observed in tanzanite by Eppler (1969) as graphite. In 1976, Gubelin and Webel also verified the presence of tremolite-actinolite as inclusions in tanzanite. Past microscopic and X-ray diffraction analyses have also identified calcite and gypsum in gem zoisite (Malisa et al., 1986).

Because most of the green tanzanites are not subjected to heat treatment, virtually all of the samples studied—both rough and cut—contained some type of inclusion. Secondary, fingerprint-like fluid inclusions could be seen in most of the rough (figure 9) and in some of the cut stones. The authors also observed two-phase (liquid and solid) and three-phase (liquid one or two solids, and gas) inclusions. We believe that the opaque solid observed in some of the fluid-filled cavities in green tanzanite (figure 10) may be graphite, on the basis of crystal morphology and its known occurrence in violetish blue tanzanite. The authors have also observed what resembles a zircon crystal surrounded by small feathers, possibly the
result of thermal expansion or natural radiation in a bluish green tanzanite (figure 11). However, because zircon has never before been reported in zoisite, further testing is needed before a firm identification can be made.

Growth tubes—a common feature in zoisites—and unidentified acicular inclusions were observed in the gem-quality green tanzanites as well (figures 12 and 13), usually throughout the entire stone. These features are believed to be responsible for the chatoyancy obtained in some of the cabochons (figure 14).

| TABLE 1. Gemological properties of transparent green zoisite found in the Merelani Hills, Tanzania^.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
</tr>
<tr>
<td>Color</td>
</tr>
<tr>
<td>Hue</td>
</tr>
<tr>
<td>Tone</td>
</tr>
<tr>
<td>Refractive Indices</td>
</tr>
<tr>
<td>Birefringence</td>
</tr>
<tr>
<td>Pleochroism</td>
</tr>
<tr>
<td>Optical absorption spectrum (thin section)</td>
</tr>
<tr>
<td>Transmission</td>
</tr>
<tr>
<td>Cheerful color filter</td>
</tr>
<tr>
<td>Fluorescence to U.V. radiation</td>
</tr>
<tr>
<td>Long-wave</td>
</tr>
<tr>
<td>Short-wave</td>
</tr>
<tr>
<td>Phosphorescence to U.V. radiation</td>
</tr>
<tr>
<td>Specific gravity</td>
</tr>
<tr>
<td>Refractive indices</td>
</tr>
<tr>
<td>a-axis</td>
</tr>
<tr>
<td>b-axis</td>
</tr>
<tr>
<td>c-axis</td>
</tr>
<tr>
<td>Pleochroic colors</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Microscopy</td>
</tr>
</tbody>
</table>

^ Properties listed, except for pleochroic colors, were obtained from 17 facetted stones ranging in weight from 0.70 to 4.25 ct. Pleochroic colors were determined from 40 rough samples ranging in weight from 0.5 to 4.0 g. See text for instrumentation used.

CHEMICAL COMPOSITION
Zoisite (tanzanite) is a calcium aluminum silicate, Ca₃Al₂(SiO₄)₃(OH)₂, which may contain varying trace elements substituting for aluminum (Ghose and Tsang, 1971). Gem-quality violetish blue zoisite (tanzanite) owes its color primarily to vanadium (V³⁺) substituting for aluminum (Al³⁺) (Hurlbut, 1969), while the bluish green tanzanite are probably graphite. (Photo- microscopic by N. R. Barot, magnified 70 x.)
opaque green zoisite (nyolite) and the new translucent to transparent green tanzanite receive their color primarily from chromium (Cr³⁺), also substituting for aluminum (Game, 1954; Scherntzer, 1982; table 2). However, all the stones we tested contained at least minor amounts of both vanadium and chromium (for more information, see Bechwith et al., 1972; figure 15). Chemically, the structure of zoisite is amenable to substitution of aluminum by chromium and/or vanadium because the atoms of all three elements are of similar size.

Again, it is interesting to note the presence of another calcium aluminum silicate, tsavorite, in this area. In fact, tsavorite sometimes occurs in nodules surrounded by kelyphitic shells of tanzanite (Kane et al., 1990). Although tsavorite receives its color primarily from V³⁺ substituting for Al³⁺, traces of chromium are also present (Manson and Stockton, 1982). Chrome-bearing tourmaline also occurs just south of Meyiioni in Losogonii. The presence of chromium in the bedrock and in other gem minerals in this region could explain why gem-quality green zoisite is also emerging with an influencing amount of chromium (Hillik and Henn, 1988).

Figure 12. Growth tubes were common in the green tanzanites examined. They appear to intersect in this 1.11-ct gem-quality stone. Photomicrograph by E. Boehm; magnified 28 x.

Figure 13. The growth tubes observed in the green tanzanites sometimes displayed interference colors. Photomicrograph by E. Boehm; magnified 30 x.
Figure 15. A comparison of the weight percentages of vanadium to chromium in the 12 faceted tanzanites analyzed (see table 2) shows the relationship of color to these chromogens. As chromium increasingly dominates vanadium, the color becomes a "green" green, on the other hand, as vanadium increases, the color becomes more bluish or yellowish.

EFFECTS OF HEAT TREATMENT

The violetish blue color commonly associated with tanzanite is usually the result of heat treatment, at approximately 500°C, of zoisites with strong brown to yellow modifiers (that is, the conversion of V⁵⁺ to V⁴⁺; Schrötzer and Bank, 1978-79). The authors subjected the five groups of rough gem-quality green tanzanites described above and in table 3 to temperatures up to 650°C. The seven stones that were dark green to medium slightly bluish green, down the c-axis showed no change in color (figure 16, left). Their lack of response is most likely because the color in these stones is due to appreciable amounts of Cr³⁺ (again, see figure 15), which does not respond to the way V⁵⁺ does. However, the remaining 33 stones did change on heating (figure 16, right).

Specifically, tanzanites that showed bluish green (figure 17, left) to brownish green responded to heat treatment by turning greenish blue (figure 17, right). This corresponds to the response reported by Schrötzer and Bank (1978-79) for bluish green zoisites with nearly equal amounts of chromium and vanadium.

| TABLE 2. Results of electron microprobe analysis of gem-quality green and blue zoisites. |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Sample no. | Weight (wt %) | Color | Oxide | | | | | | | | |
| | | | MgO | Al₂O₃ | SiO₂ | CaO | TiO₂ | V₂O₃ | Cr₂O₃ | MnO | Fe₂O₃ | ZnO | SrO | Ga₂O₃ |
| 1 | 1.06 | green-yellowish green (not heated) | | | | | | | | | | | | |
| 2 | 4.25 | 0.05 | 0.06 | 0.05 | 0.07 | 0.05 | 0.04 | 0.04 | | | | | | |
| 3 | 2.30 | 0.14 | | | | | | | | | | | | |
| 4 | 1.49 | 0.12 | | | | | | | | | | | | |
| 5 | 1.48 | 0.11 | | | | | | | | | | | | |
| 6 | 4.11 | 0.09 | | | | | | | | | | | | |
| 7 | 1.33 | 0.08 | | | | | | | | | | | | |
| 8 | 1.11 | 0.07 | | | | | | | | | | | | |
| 9 | 4.14 | 0.06 | 0.05 | 0.04 | | | | | | | | | | |
| 10 | 1.49 | | | | | | | | | | | | |
| 11 | 4.65 | | | | | | | | | | | | |
| 12 | 3.30 | | | | | | | | | | | | |

*Analyses were performed by Paul Carpenter of the California Institute of the Polytechnic on a JEOL 733 electron microprobe operating at 15 kV, a current of 35 nA, and a spot size between 0.5 and 25 µm. Each analyses was performed at three randomly selected locations; an average analysis is shown for each sample; n.d. = not detected.

*Color key: g = green; b = bluish; y = yellowish; y = yellow; G = greenish; b = bluish; g = grayish; v = violetish.

Gem-Quality Green Zoisite

GEMS & GEMOLOGY Spring 1992
Even though our research showed that dark bluish green to medium brownish green tanzanites will respond to heat treatment, our experience is that such enhancement has not been routinely practiced on such stones thus far because of the rarity of the green color and the risk of damaging stones that have inclusions. From this research, we also know that not all green tanzanites will respond to heat treatment, and it appears that a "pure" green color can only occur in nature.

CONCLUSION

To date, limited quantities of green tanzanite have been found in one small area deep in Block B of the Merelani Hills, the primary source of fine violetish blue tanzanite. Approximately 30% of the 1,000 grams of green tanzanite that have reached the market thus far are a "pure" green, colored primarily by chromium, that does not respond to heat treatment; the remaining yellowish green to brownish green stones, which we found to be colored by varying amounts of...
Figure 17. When the 4.14-carat green tanzanite on the left was heated to 650°C, a deep, slightly greenish blue (right) was created. Photos by Shane F. McClure.

Prospective buyers should beware, however, as recent parcels presented as green tanzanite have included tsavorite, chrome tourmaline, apatite, glass, and YAG, all of which may be separated from green tanzanite by the simple use of a dichroscope to verify the latter's trichroic colors.

vanadium and chromium, will be affected by heat enhancement. Because the supply of these stones has been irregular since their discovery in early 1991, it is uncertain how much green tanzanite actually exists. However, active mining and exploration continue in this area.

REFERENCES

GEM-QUALITY GREEN ZOISITE

GEMS & GEMOLOGY Spring 1992