For Further Reading

Gems & Gemology (G&G), GIA's professional journal, provides in-depth feature articles on the latest gemological research, from gem treatments, synthetics, and the evaluation of gem quality to developments in gem production, market sources, and more.

To give you the opportunity to learn more about the subjects you are studying and enrich your gemological knowledge, a list of *G&G* articles relevant to each Gem Identification assignment is provided below. It is important to note that this reading is optional. You will not be tested on the content of these articles.

All *G&G* articles are available for download free of charge on GIA's website, www.gia.edu. Copies of these articles are also available at your GIA campus location. Check with your instructor for access to them.

Assignment 1: Introduction

Gems & Gemology: https://www.gia.edu/gems-gemology

News and Articles: https://www.gia.edu/gia-news-research

GIA Gem Project

Dr. Edward Gübelin's comprehensive collection was acquired by GIA in 2005. The Gübelin collection consists of approximately 2,800 gems representing 225 different minerals. It now forms part of the GIA Gem Collection, where it is being used for research, education, and display. Since 2007, GIA has undertaken a project to characterize gemstones from the Gübelin collection. This project has two main goals: to systematically document the stones using a range of techniques, and to make the results available on the GIA website as a valuable resource for students, gemologists, researchers, and anyone interested in gem materials. Each entry includes geographic locality information, a summary of standard gemological properties, a brief description of the internal or external features that can be seen with standard magnification, and infrared, visible, Raman, and photoluminescence spectra where relevant.

Please see the index page at https://www.gia.edu/gia-gem-database

Major Entries

Beryl: https://www.gia.edu/gia-gem-project-beryl

Corundum: https://www.gia.edu/gia-gem-corundum

Garnet: https://www.gia.edu/gia-gem-project-garnet

Spinel: https://www.gia.edu/gia-gem-project-spinel

Tourmaline: https://www.gia.edu/gia-gem-project-tourmaline

Zircon: https://www.gia.edu/gia-gem-project-zircon

Various gems

Amblygonite–Axinite: https://www.gia.edu/gia-gem-project-various-gems-a

Barite–Cuprite: https://www.gia.edu/gia-gem-project-various-gems-b-c

Danburite–Humite: https://www.gia.edu/gia-gem-project-various-gems-d-h

Kornerupine–Natrolite: https://www.gia.edu/gia-gem-project-various-gems-k-n

Olivine (peridot)–Rutile: https://www.gia.edu/gia-gem-project-various-gems-o-r

Sapphirine–Stibiotantalite: https://www.gia.edu/gia-gem-project-various-gems-s

Taaffeite–Zoisite: https://www.gia.edu/gia-gem-project-various-gems-t-z
Assignment 2: General Observation

Doubling

https://www.gia.edu/gems-gemology/winter-1984-calcite-hurlbut

Phenomena

https://www.gia.edu/gia-news-research/optical-effects-phenomenal-cabochons

https://www.gia.edu/gems-gemology/winter-1982-alexandrite-effect-gubelin

Assembled Stones

Anjomani N. (2016) Lab Notes: Synthetic Sapphire and Synthetic Spinel Doublets. Gems & Gemology, Vol. 52, No. 4
https://www.gia.edu/gems-gemology/winter-2016-labnotes-synthetic-sapphire-synthetic-spinel-doublets

https://www.gia.edu/gems-gemology/FA13-LN-imitation-moonstone-assemblage

https://www.gia.edu/gems-gemology/spring-2012-gem-news-international

https://www.gia.edu/gems-gemology/spring-2011-gem-news-international

https://www.gia.edu/gems-gemology/fall-2007-gem-news-international

https://www.gia.edu/gems-gemology/summer-2001-imitating-asterism-mcclure

https://www.gia.edu/gems-gemology/spring-2001-lab-notes

https://www.gia.edu/gems-gemology/fall-1995-lab-notes

Assignment 3: Refraction and the Refractometer

Assignment 4: Polariscope Testing

https://www.gia.edu/gems-gemology/fall-1986-amethyst-twinning-crownsinghield
Assignment 5: Pleochroism and the Dichroscope

https://www.gia.edu/gems-gemology/fall-2014-introduction-pleochroism-faceted-gems

Assignment 6: Magnification

https://www.gia.edu/gems-gemology/winter-2016-microworld-ferropericlase-inclusion-diamond

https://www.gia.edu/gems-gemology/fall-2016-microworld-etch-marks-negative-crystals-tubes-spinel-madagascar

https://www.gia.edu/gems-gemology/fall-2016-microworld-tourmaline-termination

https://www.gia.edu/gems-gemology/fall-2016-gemnews-large-aqueous-primary-fluid-inclusion-amethyst

https://www.gia.edu/gems-gemology/fall-2016-microworld-mobile-fluorite-quartz

https://www.gia.edu/gems-gemology/fall-2016-microworld-unusual-growth-zoning-beryl

https://www.gia.edu/gems-gemology/spring-2016-microworld-fantastic-display-phase-changes-sapphires-fluid-inclusion

https://www.gia.edu/gems-gemology/summer-2015-microworld-introduction-gems

https://www.gia.edu/gems-gemology/micro-world-gallery

The Hidden Beauty of Gemstones (2013) GIA Research & News
https://www.gia.edu/photomicrography

https://www.gia.edu/gems-gemology/spring-2009-tourmalines-mozambique-koivula

For Further Reading

Gems & Gemology (G&G), GIA’s professional journal, provides in-depth feature articles on the latest gemological research, from gem treatments, synthetics, and the evaluation of gem quality to developments in gem production, market sources, and more.

To give you the opportunity to learn more about the subjects you are studying and enrich your gemological knowledge, a list of *G&G* articles relevant to each Gem Identification assignment is provided below. It is important to note that this reading is optional. You will not be tested on the content of these articles.

All *G&G* articles are available for download free of charge on GIA’s website, www.gia.edu. Copies of these articles are also available at your GIA campus location. Check with your instructor for access to them.

Assignment 7: Selective Absorption and the Spectroscope

https://www.gia.edu/gems-gemology/summer-1982-diamonds-coloration-scarratt

https://www.gia.edu/summer-1957-a4-spectroscopy-gem-testing-crowningshield

Assignment 8: Fluorescence and Phosphorescence

https://www.gia.edu/gems-gemology/summer-2013-luo-fluorescence-optical-defects

https://www.gia.edu/gems-gemology/winter-1997-fluorescence-diamonds-moses

Assignment 9: Additional Tests

https://www.gia.edu/gems-gemology/winter-2012-hpht-diamond-feral

https://www.gia.edu/gems-gemology/summer-1983-diamond-thermal-hoover
Assignment 10: Separation and Identification

https://www.gia.edu/gems-gemology/summer-1994-emeralds-madagascar-schwarz

https://www.gia.edu/gems-gemology/summer-1993-synthetic-spinel-russia-muhlemaster

https://www.gia.edu/gems-gemology/spring-1982-jade-enigma-hobbs

Assignment 11: Separating Natural Gems from Synthetics and Imitations

Synthetic Diamonds (General)

https://www.gia.edu/gems-gemology/spring-2016-photoluminescence-spectroscopy-diamond-applications-gemology

Dieck C. et al. (2016) Lab Notes: Analysis of Yellow Diamond Melee for Color Treatment and Synthetics. Gems & Gemology, Vol. 52, No. 1
https://www.gia.edu/gems-gemology/spring-2016-labnotes-analysis-yellow-diamond-melee-color-treatment-synthetics

https://www.gia.edu/identifying-lab-grown-diamonds

Wang W. et al. (2015) Lab Notes: Screening of Small Yellow Diamond Melee for Treatment and Synthetics. Gems & Gemology, Vol. 50, No. 4
https://www.gia.edu/gems-gemology/winter-2014-labnotes-small-yellow-diamond-melee

https://www.gia.edu/gems-gemology/winter-2010-synthetic-diamonds-renfro

https://www.gia.edu/gems-gemology/winter-2004-characteristics-hppt-grown-synthetic-diamonds-shigley

https://www.gia.edu/gems-gemology/summer-1989-diamond-thin-films-fritsch
CVD Synthetic Diamonds

https://www.gia.edu/gems-gemology/fall-2011-cvd-synthetic-diamond-willems

https://www.gia.edu/gems-gemology/spring-2010-synthetic-diamond-khan

https://www.gia.edu/gems-gemology/spring-2010-pink-cvd-diamonds-wang

https://www.gia.edu/ongoing-research/cvd-grown-pink-diamonds

HPHT Synthetic Diamonds

https://www.gia.edu/gems-gemology/winter-2016-labnotes-blue-HPHT-synthetic-diamond-over-10-carats

https://www.gia.edu/gems-gemology/summer-2016-labnotes-yellow-synthetic-diamond-nickel-related-green-fluorescence

https://www.gia.edu/gems-gemology/spring-2016-labnotes-largest-blue-HPHT-synthetic-diamond

https://www.gia.edu/gems-gemology/spring-2016-gemnews-large-colorless-hpht-synthetic-gem-diamonds-china

Poon P.Y. et al. (2015) Large HPHT-Grown Synthetic Diamonds Examined in GIA’s Hong Kong Laboratory. GIA Research & News

https://www.gia.edu/gems-gemology/spring-2014-ulrika-hpht-synthetic-diamonds

https://www.gia.edu/gems-gemology/winter-2012-hpht-diamond-feral

https://www.gia.edu/gems-gemology/fall-2009-diamonds-hpht-treated-dobrinets

Shigley J.E. et al. (2002) Gemesis Laboratory-Created Diamonds. Gems & Gemology, Vol. 38, No. 4
https://www.gia.edu/gems-gemology/winter-2002-gemesis-laboratory-created-diamonds-shigley

https://www.gia.edu/gems-gemology/spring-1997-synthetic-diamond-properties-shigley

https://www.gia.edu/gems-gemology/winter-1993-russia-synthetic-diamond-shigley

https://www.gia.edu/gems-gemology/fall-1993-synthetic-diamond-shigley

https://www.gia.edu/gems-gemology/winter-1987-debeers-synthetic-diamond-shigley
https://www.gia.edu/gems-gemology/winter-1986-synthetic-diamond-shigley

https://www.gia.edu/gems-gemology/fall-1984-synthetic-diamond-koivula

https://www.gia.edu/gems-gemology/fall-1984-synthetic-diamonds-rossman

Synthetic Corundum

https://www.gia.edu/gia-news-research/synthetic-ruby-overgrowth-corundum-analysis

https://www.gia.edu/gia-news-research-Sapphire-Series-Introduction-to-Sapphire-and-Synthetic-Sapphire

https://www.gia.edu/gia-news-research-Sapphire-Series-Treated-Synthetics

https://www.gia.edu/gems-gemology/fall-1997-hydrotherma-synthetic-sapphires-thomas

https://www.gia.edu/gems-gemology/summer-1994-douros-synthetic-ruby

https://www.gia.edu/gems-gemology/winter-1988-ruby-inamori-koivula

https://www.gia.edu/gems-gemology/fall-1983-synthetic-ruby-kane

https://www.gia.edu/gems-gemology/fall-1982-synthetic-sapphire-kane

https://www.gia.edu/gems-gemology/fall-1982-synthetic-ruby-gubelin

Synthetic Beryl

https://www.gia.edu/gems-gemology/winter-2016-synthetic-emeralds-richard-nacken-1920s
FOR FURTHER READING

https://www gia.edu/gems-gemology/winter-2007-gem-news-international

https://www gia.edu/gems-gemology/spring-1996-hydrothermal-synthetic-emerald-koivula

https://www gia.edu/gems-gemology/fall-1987-lennix-synthetic-emerald-graziani

https://www gia.edu/gems-gemology/fall-1985-synthetic-emerald-australia-kane

https://www gia.edu/gems-gemology/summer-1985-russia-synthetic-emerald-koivula

https://www gia.edu/gems-gemology/fall-1984-synthetics-emerald-stockton

Synthetic Quartz

https://www gia.edu/gems-gemology/summer-1999-russian-synthetic-ametrine-balitsky

https://www gia.edu/gems-gemology/spring-1998-russian-synthetic-pink-quartz-balitsky

https://www gia.edu/gems-gemology/fall-1986-amethyst-twinning-crowningshield

Synthetic Opal

https://www gia.edu/gems-gemology/spring-2012-gem-news-international

https://www gia.edu/gems-gemology/fall-2008-synthetic-fire-opal-choudhary

https://www gia.edu/gems-gemology/fall-1987-synthetic-opal-kyocera-schmetzer

Other

https://www gia.edu/gems-gemology/winter-2010-synthetic-diamonds-renfro

https://www gia.edu/gems-gemology/summer-1997-gem-news-international

https://www gia.edu/gems-gemology/fall-1987-malachite-russia-balitsky

https://www gia.edu/gems-gemology/fall-1987-alexandrite-inamori-created-kane

https://www gia.edu/gems-gemology/spring-1987-synthetic-jadeite-nassau

259
Assignment 12: Detecting Gem Treatments

General Treatment Articles

https://www.gia.edu/gems-gemology/fall-2010-detection-disclosure-heating-mcclure

https://www.gia.edu/gems-gemology/spring-2008-history-of-diamond-treatments-overton

https://www.gia.edu/gems-gemology/spring-1990-gemstone-enhancement-kammerling

Heat Treatment

https://www.gia.edu/gia-news-research-low-temperature-heat-treatment-mozambique-ruby

https://www.gia.edu/gems-gemology/FA13-koivula-corundum-heat-treatment

https://www.gia.edu/ongoing-research/distinguishing-heated-unheated-spinel

https://www.gia.edu/gems-gemology/summer-2007-gem-news-international

https://www.gia.edu/gems-gemology/winter-1993-montana-sapphires-emmett

Diffusion Treatment

https://www.gia.edu/gems-gemology/spring-2002-gem-news-international

https://www.gia.edu/gems-gemology/summer-1990-diffusion-treated-sapphire-kane
Other Corundum Treatments and Treatment Combinations

https://www.gia.edu/gems-gemology/winter-1984-ruby-glass-kane

https://www.gia.edu/gems-gemology/winter-1983-inclusions-koivula

HPHT Treatment of Diamond

https://www.gia.edu/gems-gemology/fall-2000-ge-pol-diamonds-smith

https://www.gia.edu/gems-gemology/winter-1999-general-electric-enhanced-diamonds-schmetzer

Clarity Enhancement

https://www.gia.edu/gems-gemology/spring-2016-labnotes-hydrophane-opal-treatment

https://www.gia.edu/gems-gemology/FA13-LN-green-glass-filled-sapphire

https://www.gia.edu/ongoing-research/lead-glass-filled-star-rubies-reportedly-from-madagascar

https://www.gia.edu/gems-gemology/summer-2000-filling-material-diamonds-oved-shigley

https://www.gia.edu/gems-gemology/summer-2000-lasering-technique-diamond-mcclure

https://www.gia.edu/gems-gemology/summer-1989-diamond-filling-koivula

Irradiation

https://www.gia.edu/gems-gemology/winter-2014-labnotes-irradiated-yellow-diamond

https://www.gia.edu/gems-gemology/fall-2014-labnotes-irradiated-cvd-synthetic-diamond

https://www.gia.edu/gems-gemology/spring-2013-labnotes-green-radioactive-salt

https://www.gia.edu/gems-gemology/summer-1989-color-treated-diamond-fritsch

https://www.gia.edu/gems-gemology/spring-1985-topaz-color-nassau

https://www.gia.edu/gems-gemology/summer-1982-irradiated-spodumene-rossman

https://www.gia.edu/gems-gemology/winter-1981-radioactivity-topaz-crowningshield

Coating

https://www.gia.edu/gia-news-research-titanium-coated-tanzanite-cooper

https://www.gia.edu/gems-gemology/gemological-characteristics-coated-jadeite-jade

https://www.gia.edu/gems-gemology/summer-2008-coated-tanzanite-mcclure

Dyeing

Quench-Crackling

Bleaching and Polymer Impregnation

Sugar Treatment

General

For Further Reading

Gems & Gemology (G&G) is GIA’s professional journal, providing in-depth feature articles on the latest gemological research, from gem treatments, synthetics, and the evaluation of gem quality to developments in gem production, market sources, and more.

To give you the opportunity to learn more about the subjects you are studying and enrich your gemological knowledge, a list of G&G articles relevant to each Gem Identification assignment is provided below. It is important to note that this reading is optional. You will not be tested on the content of these articles.

All G&G articles are available for download free of charge on GIA’s website, www.gia.edu. Copies of these articles are also available at your GIA campus location. Check with your instructor for access to them.

Assignment 13: Separating Red, Pink, and Purple Gems

Pink-to-Red Diamond

Eaton-Magaña S. (2016) Lab Notes: Treated Pink Type IIa Diamond Colored by Red Luminescence. _Gems & Gemology_, Vol. 52, No. 3
https://www.gia.edu/gems-gemology/fall-2016-labnotes-treated-pink-type-IIa-diamond-colored-red-luminescence

https://www.gia.edu/gems-gemology/FA13-LN-pinkish-brown-CVD-synthetic

Moe K.S. (2013) Lab Notes: Large HPHT-Treated Fancy Pink Diamond. _Gems & Gemology_, Vol. 49, No. 1
https://www.gia.edu/gems-gemology/spring-2013-labnotes-hpht-fancy-pink

https://www.gia.edu/gems-gemology/spring-2010-pink-cvd-diamonds-wang

Wang W. et al. (2005) Treated-Color Pink-To-Red Diamonds from Lucent Diamonds Inc. _Gems & Gemology_, Vol. 41, No. 1

https://www.gia.edu/gems-gemology/summer-2002-grading-natural-pink-diamonds-king

Ruby and Pink-to-Red Corundum

https://www.gia.edu/gems-gemology/fall-2016-gemnews-preliminary-study-rubies-reportedly-pokot-kenya

https://www.gia.edu/gems-gemology/spring-2016-gemnews-ruby-sapphire-muling-china

Series of Articles on Rubies from Mozambique (2014) GIA Research & News
https://www.gia.edu/gia-news-research-mozambique-montepuez-rubies

https://www.gia.edu/gems-gemology/fall-2011-ruby-sapphire-khol

https://www.gia.edu/gems-gemology/fall-2009-gem-news-international

https://www.gia.edu/gia-news-research-nr32309

https://www.gia.edu/gems-gemology/winter-2008-rubies-sapphires-tanzania-schwarz

https://www.gia.edu/gems-gemology/summer-2008-gem-news-international

https://www.gia.edu/gems-gemology/fall-2007-gem-news-international

https://www.gia.edu/gems-gemology/spring-1995-ruby-mong-hsu-peretti

204

Treated Red Corundum

Pink-to-Red Spinel

https://www.gia.edu/gems-gemology/spring-2009-lab-notes

Saeseaw S. et al. (2009) Distinguishing Heated Spinels from Unheated Natural Spinels and from Synthetic Spinels. GIA Research & News
https://www.gia.edu/ongoing-research/distinguishing-heated-unheated-spinel

https://www.gia.edu/gems-gemology/spring-2004-gem-news-international

Garnet

https://www.gia.edu/gems-gemology/fall-2016-gemnews-purple-pyrope-almandine-garnet-mozambique

Pink-to-Red Tourmaline
https://www.gia.edu/gems-gemology/fall-2009-gem-news-international

https://www.gia.edu/gems-gemology/fall-2009-gem-news-international

https://www.gia.edu/gems-gemology/spring-2002-liddicoatite-tourmaline-madagascar

Pink-to-Red Topaz
https://www.gia.edu/gems-gemology/fall-1986-pink-topaz-gubelin

Pink-to-Red Beryl
https://www.gia.edu/gems-gemology/summer-2012-gem-news-international

https://www.gia.edu/gems-gemology/spring-2003-gem-news-international

https://www.gia.edu/gems-gemology/fall-2002-gem-news-international

https://www.gia.edu/gems-gemology/spring-1989-beryl-brazil-kampf

https://www.gia.edu/gems-gemology/winter-1984-beryl-utah-shigley

Purple Quartz

https://www.gia.edu/gems-gemology/spring-2009-gem-news-international

https://www.gia.edu/gems-gemology/spring-2009-anahi-ametrine-mine

https://www.gia.edu/gems-gemology/fall-2004-amethyst-four-peaks-arizona-lowell
https://www.gia.edu/gems-gemology/fall-1989-synthetic-quartz-koivula

Kunzite Spodumene

https://www.gia.edu/gems-gemology/summer-2010-gem-news-international

https://www.gia.edu/gems-gemology/winter-2008-gem-news-international

Oregon Sunstone

Red Feldspar (Andesine Controversy)

https://www.gia.edu/gems-gemology/summer-2011-feldspar-shigatse-tibet-abduriyim

https://www.gia.edu/ongoing-research/special-report-on-red-felspar

https://www.gia.edu/gems-gemology/winter-2010-gem-news-international

https://www.gia.edu/gia-news-research-nr33009A

https://www.gia.edu/gems-gemology/winter-2008-gem-news-international

https://www.gia.edu/gems-gemology/winter-2008-gem-news-international

https://www.gia.edu/gems-gemology/summer-2008-gem-news-international

Pink-to-Red Opal

https://www.gia.edu/gems-gemology/winter-2011-hydrophane-opal-renfro
Rhodochrosite

https://www.gia.edu/gems-gemology/fall-2011-gem-news-international

https://www.gia.edu/gems-gemology/spring-2009-gem-news-international

https://www.gia.edu/gems-gemology/summer-1997-rhodochrosite-colorado-knox

Sugilite

https://www.gia.edu/gems-gemology/summer-1987-sugilite-wessels-shigley

Assignment 14: Separating Blue and Violet Gems

Blue Diamond

https://www.gia.edu/gems-gemology/winter-2016-labnotes-blue-HPHT-synthetic-diamond-over-10-carats

https://www.gia.edu/gems-gemology/winter-2016-labnotes-largest-blue-hpht-synthetic-diamond

https://www.gia.edu/gems-gemology/winter-2014-blue-moon-diamond

https://www.gia.edu/gems-gemology/winter-2008-wittelsbach-blue-droschel

King J.M. et al. (1998) Characterizing Natural-Color Type IIB Blue Diamonds. Gems & Gemology, Vol. 34, No. 4
https://www.gia.edu/gems-gemology/winter-1998-blue-diamonds-king

Blue-to-Violet Sapphire

https://www.gia.edu/gems-gemology/summer-2017-inclusions-sapphire

Sapphire Chart Article: Suggested Reading on Sapphires and Their Inclusions (2017) Gems & Gemology, Vol. 53, No. 2

https://www.gia.edu/gia-news-research/sapphire-chanthaburi-thailand-gemological-characteristics

Soonthornantikul W. et al. (2017) An In-Depth Gemological Study of Blue Sapphires from the Baw Mar Mine (Mogok, Myanmar). Research News
https://www.gia.edu/gia-news-research/blue-sapphires-baw-mar-mine-mogok-myanmar

Treated Synthetic Sapphire

Blue-to-Violet Spinel

Copper-Bearing and Blue Tourmaline

Blue Beryl

Iolite

Lapis Lazuli

Kyanite

https://www.gia.edu/gems-gemology/winter-2004-gem-news-international

Benitoite

https://www.gia.edu/gems-gemology/fall-1997-benitoite-california-laurs

Turquoise

https://www.gia.edu/gems-gemology/fall-2012-turquoise-chen

https://www.gia.edu/gems-gemology/summer-2010-turquoise-composite-choudhary

https://www.gia.edu/gems-gemology/summer-2008-gem-news-international

https://www.gia.edu/gems-gemology/spring-1986-china-turquoise-fuquan

https://www.gia.edu/gems-gemology/fall-1983-turquoise-spectroscopy-lind

Blue Opal

https://www.gia.edu/gems-gemology/winter-2003-gem-news-international

Assignment 15: Separating Green Gems

Green Diamond

https://www.gia.edu/gems-gemology/spring-2013-labnotes-green-radioactive-salt

https://www.gia.edu/gems-gemology/fall-1988-green-diamonds-fritsch
Emerald

https://www.gia.edu/gems-gemology/winter-2016-inclusions-natural-synthetic-treated-emerald

https://www.gia.edu/gems-gemology/fall-2015-colombian-trapiche-emeralds-recent-advances-understanding-formation

https://www.gia.edu/gems-gemology/summer-2014-saeseaw-three-phase-inclusions-emerald

https://www.gia.edu/gems-gemology/spring-2012-emeralds-brazil-zwaan

https://www.gia.edu/gems-gemology/spring-2011-gem-news-international

https://www.gia.edu/gems-gemology/winter-2010-gem-news-international

https://www.gia.edu/gems-gemology/spring-2008-gem-news-international

https://www.gia.edu/gems-gemology/spring-2005-gem-news-international

https://www.gia.edu/gems-gemology/summer-1997-sandawana-mines-emerald-zwaan

https://www.gia.edu/gems-gemology/fall-1989-brazil-emeralds-epstein

FOR FURTHER READING
https://www.gia.edu/gems-gemology/summer-1986-colombia-emeralds-ringsrud

https://www.gia.edu/gems-gemology/spring-1984-emerald-cassedanne

Beryl
https://www.gia.edu/gems-gemology/spring-1993-finland-beryl-lahti

Jadeite
https://www.gia.edu/gems-gemology/gemological-characteristics-coated-jadeite-jade

https://www.gia.edu/ongoing-research/the-jadeite-omphacite-nomenclature-question

https://www.gia.edu/gems-gemology/spring-2000-burmese-jade-hughes

https://www.gia.edu/gems-gemology/spring-1982-jade-enigma-hobbs

Nephrite

https://www.gia.edu/gems-gemology/fall-2014-nephrite-jade-guangxi-province-china

https://www.gia.edu/gems-gemology/summer-2013-adamo-nephrite-italy

Tourmaline

Peridot
https://www.gia.edu/gems-gemology/fall-2016-peridot-central-highlands-vietnam-properties-origin-formation

https://www.gia.edu/gems-gemology/fall-2011-peridot-meteorite-shen

https://www.gia.edu/gems-gemology/summer-2009-peridot-sardinia-italy-adamo
FOR FURTHER READING

https://www.gia.edu/gems-gemology/spring-1986-china-peridot-koivula

https://www.gia.edu/gems-gemology/summer-1983-peridot-tanzania-stockton

Grossular Garnet (Including Tsavorite)

https://www.gia.edu/gems-gemology/spring-2004-gem-news-international

https://www.gia.edu/gems-gemology/summer-1990-tsavorite-tanzania-kane

https://www.gia.edu/gems-gemology/winter-1982-grossular-garnet-manson

Andradite Garnet

https://www.gia.edu/gems-gemology/winter-2014-gemnews-demantoid-baluchistan-province-pakistan

https://www.gia.edu/gems-gemology/spring-2011-demantoid-topazolite-antetezambato-pezzotta

https://www.gia.edu/gems-gemology/spring-2010-gem-news-international

https://www.gia.edu/gems-gemology/winter-2009-demantoid-italy-adamo

https://www.gia.edu/gems-gemology/fall-2009-gem-news-international

https://www.gia.edu/gems-gemology/spring-2004-gem-news-international
https://www.gia.edu/gems-gemology/spring-2003-gem-news-international

https://www.gia.edu/gems-gemology/summer-1996-green-andradite-garnet-phillips

https://www.gia.edu/gems-gemology/fall-1995-garnet-mali-johnson

https://www.gia.edu/gems-gemology/winter-1983-garnet-stockton

https://www.gia.edu/gems-gemology/fall-1981-andradites-payne

Green-to-Yellow Chrysoberyl

https://www.gia.edu/gems-gemology/summer-2004-lab-notes

https://www.gia.edu/gems-gemology/fall-2002-gem-news-international

Andalusite

https://www.gia.edu/gems-gemology/summer-2009-andalusite-brazil-fernandes

Green Zoisite

https://www.gia.edu/gems-gemology/spring-1981-green-zoisite-barot

Chrysoberyl (Including Alexandrite)

https://www.gia.edu/gems-gemology/summer-2004-lab-notes

https://www.gia.edu/gems-gemology/fall-2002-gem-news-international

Green Spodumene

https://www.gia.edu/gems-gemology/fall-2007-gem-news-international

https://www.gia.edu/gems-gemology/fall-2003-gem-news-international
Diopside

https://www.gia.edu/gems-gemology/winter-2010-gem-news-international

https://www.gia.edu/gems-gemology/spring-2010-gem-news-international

https://www.gia.edu/gems-gemology/winter-2006-gem-news-international

https://www.gia.edu/gems-gemology/fall-2002-gem-news-international

Chalcedony (Including Chrysoprase)

https://www.gia.edu/gems-gemology/winter-2009-chrysoprase-prase-opal-shigley

Green Feldspar

https://www.gia.edu/gems-gemology/spring-2008-gem-news-international

https://www.gia.edu/gems-gemology/winter-2005-gem-news-international

Variscite

https://www.gia.edu/gems-gemology/spring-2016-variscite-central-tajikistan-preliminary-results

Serpentine

Maw-Sit-Sit

https://www.gia.edu/gems-gemology/fall-2001-lab-notes

https://www.gia.edu/gems-gemology/spring-1998-gem-news-international
Assignment 16: Separating Orange, Yellow, and Brown Gems

Diamond

https://www.gia.edu/gems-gemology/summer-2016-labnotes-yellow-synthetic-diamond-nickel-related-green-fluorescence

https://www.gia.edu/gems-gemology/winter-2014-labnotes-irradiated-yellow-diamond

https://www.gia.edu/gems-gemology/summer-2014-labnotes-yellow-cvd-synthetic-diamond

https://www.gia.edu/gems-gemology/winter-1993-russia-synthetic-diamond-shigley

Topaz

Sauer D.A. et al. (1996) An Update on Imperial Topaz from the Capão Mine, Minas Gerais. Gems & Gemology, Vol. 32, No. 4
https://www.gia.edu/gems-gemology/winter-1996-imperial-topaz-brazil-sauer

https://www.gia.edu/gems-gemology/spring-1983-topaz-brazil-keller

Beryl

https://www.gia.edu/gems-gemology/summer-2007-gem-news-international

Spessartine Garnet

https://www.gia.edu/gems-gemology/spring-2008-gem-news-international
https://www.gia.edu/gems-gemology/winter-2001-spessartine-garnet-california-laurs

“Malaya” Garnet

Chrysoberyl

https://www.gia.edu/gems-gemology/fall-2002-gem-news-international

Andalusite

https://www.gia.edu/gems-gemology/summer-2009-andalusite-brazil-fernandes

Danburite

https://www.gia.edu/gems-gemology/winter-2016-danburite-luc-yen-mining-area-vietnam

Feldspar

https://www.gia.edu/gems-gemology/fall-2003-gem-news-international

https://www.gia.edu/gems-gemology/summer-2002-gem-news-international

Citrine Quartz

https://www.gia.edu/gems-gemology/citrine-from-zambia

Pearl

https://www.gia.edu/gems-gemology/spring-2002-yellow-cultured-pearls-pinctada-margaritifera-elen

For Further Reading

Gems & Gemology (G&G), GIA’s professional journal, provides in-depth feature articles on the latest gemological research, from gem treatments, synthetics, and the evaluation of gem quality to developments in gem production, market sources, and more.

To give you the opportunity to learn more about the subjects you are studying and enrich your gemological knowledge, a list of G&G articles relevant to each Gem Identification assignment is provided below. It is important to note that this reading is optional. You will not be tested on the content of these articles.

All G&G articles are available for download free of charge on GIA’s website, www.gia.edu. Copies of these articles are also available at your GIA campus location. Check with your instructor for access to them.

Assignment 17: Separating Colorless, White, Gray, and Black Gems

Diamond

https://www.gia.edu/identifying-lab-grown-diamonds

HPHT Synthetic Diamond

https://www.gia.edu/gems-gemology/spring-2016-gemnews-large-colorless-hpht-synthetic-gem-diamonds-china

Poon P.Y. et al. (2015) Large HPHT-Grown Synthetic Diamonds Examined in GIA’s Hong Kong Laboratory. GIA Research & News

https://www.gia.edu/gems-gemology/spring-2014-ulrika-hpht-synthetic-diamonds

https://www.gia.edu/gems-gemology/spring-1997-synthetic-diamond-properties-shigley

CVD Synthetic Diamond

https://www.gia.edu/gems-gemology/summer-2012-recent-advances-cvd-quality-eaton-magaña

Pearl

https://www.gia.edu/gems-gemology/fall-2016-bead-cultured-pearls-lombok-indonesia

https://www.gia.edu/gems-gemology/spring-2010-gem-news-international

https://www.gia.edu/gems-gemology/spring-2002-yellow-cultured-pearls-pinctada-margaritifera-elen

https://www.gia.edu/gems-gemology/fall-1990-imitation-pearls-hanano

Opal

https://www.gia.edu/gems-gemology/FA13-opal-digit-patterns-rondeau
FOR FURTHER READING

https://www.gia.edu/gems-gemology/summer-2010-opal-ethiopia-rondeau

https://www.gia.edu/gems-gemology/spring-2009-gem-news-international

https://www.gia.edu/gems-gemology/summer-1996-shewa-province-opal-johnson

https://www.gia.edu/gems-gemology/summer-1983-opal-queretaro-koivula

Feldspar

https://www.gia.edu/gems-gemology/winter-2006-gem-news-international

https://www.gia.edu/gems-gemology/spring-2005-gem-news-international

https://www.gia.edu/gems-gemology/summer-1997-gem-news-international

Chalcedony

https://www.gia.edu/gems-gemology/FA13-dumanska-agate-sidi-rahal

Diamond Simulants

https://www.gia.edu/gems-gemology/summer-2016-gemnews-synthetic-moissanite-imitations-synthetic-colored-diamonds

https://www.gia.edu/gems-gemology/spring-2012-zirconia-diamantine-shigley
Assignment 18: Identifying Rough Gems, Parcels, and Mounted Gems

https://www.gia.edu/gems-gemology/winter-2016-gemnews-imitation-rubellite-boulders

https://www.gia.edu/gems-gemology/winter-2014-gemnews-unusual-composite-ruby-rough

https://www.gia.edu/gems-gemology/summer-1997-gem-news-international

Assignment 19: Advanced Laboratory Testing

General

https://www.gia.edu/gems-gemology/fall-2010-analysis-techniques-breeding

Photoluminescence (PL) Spectroscopy

https://www.gia.edu/gems-gemology/spring-2016-photoluminescence-spectroscopy-diamond-applications-gemology

Raman Spectroscopy

https://www.gia.edu/gems-gemology/spring-2010-emeralds-spectroscopy-huong

https://www.gia.edu/gems-gemology/fall-2010-detection-disclosure-heating-mcclure
FOR FURTHER READING

https://www.gia.edu/gems-gemology/spring-2009-stylaster-corals-karampeles

Infrared Spectroscopy

https://www.gia.edu/gems-gemology/fall-2011-amethyst-crystals-karampelas

https://www.gia.edu/gems-gemology/summer-1987-emerald-spectroscopy-stockton

Trace Element Chemistry

https://www.gia.edu/gia-news-research-nr101410

Other

Karampelas S. et al. (2011) UV-Vis-NIR Reflectance Spectroscopy of Natural-Color Saltwater Cultured Pearls from Pinctada Margaritifera. Gems & Gemology, Vol. 47, No. 1
https://www.gia.edu/gems-gemology/spring-2011-saltwater-pearls-karampelas

https://www.gia.edu/gems-gemology/summer-2010-pearls-microtomography-karampelas

https://www.gia.edu/gems-gemology/summer-2010-pearls-microtomography-krzemnicki