The identification and characterization of natural, synthetic, and treated gem materials remain essential to ensure continued confidence among consumers. Today, gemological research to address these issues is expanding in many exciting directions that encompass a range of scientific fields. To bring together researchers from these diverse disciplines, as well as a wide variety of participants from academia and the gem and jewelry industry, GIA hosted the Gemological Research Conference (GRC) in San Diego on August 26–27, 2006. This conference provided an open forum for scientists and other specialists from around the world to discuss cutting-edge developments in gemology. The program consisted of 60 oral presentations (including 12 invited speakers) and 61 posters, covering the six conference themes. Each abstract was reviewed by selected GRC committee members and edited for clarity. All 121 of these abstracts, plus 28 abstracts from the Symposium Poster Session, are reproduced on the following pages.

More than 700 people registered for the GRC, and two sold-out field trips to the Pala gem-pegmatite district were held before and after the conference. GIA thanks Charles & Colvard Ltd. for their generous financial support of this inaugural event. In addition, several donors supplied funds for GRC travel grants (see inside front cover of this issue). The Pala mine owners, as well as Pala International/The Collector in Fallbrook, are thanked for making their properties available and providing excellent service during the field trips.

Our goal is to hold the Gemological Research Conference on a regular basis. The next GRC is scheduled for the San Diego area in August 2009. We look forward to seeing—and working with—all of you there.

James E. Shigley and Brendan M. Laurs
Co-Chairs, 2006 Gemological Research Conference

PHOTOMONTAGE

ABSTRACTS OF GRC ORAL PRESENTATIONS

Diamond and Corundum Treatments
Gem Characterization Techniques
General Gemology
Geology of Gem Deposits
Laboratory Growth of Gem Materials
New Gem Localities

POSTER SESSION ABSTRACTS
Organizing Committee

The following research scientists and gem dealers are thanked for their help in reviewing abstracts, chairing sessions, and providing advice in shaping the content and form of the 2006 GIA Gemological Research Conference.

Diamond and Corundum Treatments

Alan T. Collins
King’s College, London

Filip De Weerdt
HRD Research, Lier, Belgium

Kenneth Scarratt
GIA Thailand, Bangkok

Gem Characterization Techniques

Emmanuel Fritsch
Institut des Matériaux, Nantes, France

Frank Hawthorne
University of Manitoba, Winnipeg, Canada

Franck Notari
GIA GemTechLab, Geneva, Switzerland

George R. Rossman
California Institute of Technology, Pasadena, California

Karl Schmetzer
Petershausen, Germany

General Gemology

Shigeru Akamatsu
K. Mikimoto & Company, Tokyo

Jaroslav Hyršl
Kolin, Czech Republic

Lore Kiefert
AGTA Gemological Testing Center, New York

John M. King
GIA Laboratory, New York

Shane F. McClure
GIA Laboratory, Carlsbad

Russell Shor
GIA, Carlsbad

Christopher P. Smith
GIA Laboratory, New York

Ichiro Sunagawa
Tokyo, Japan

Wuyi Wang
GIA Laboratory, New York

Geology of Gem Deposits

Lee A. Groat
University of British Columbia, Vancouver, Canada

George E. Harlow
American Museum of Natural History, New York

A. J. A. (Bram) Janse
Archon Exploration, Carine, Australia

David London
University of Oklahoma, Norman, Oklahoma

William (Skip) Simmons
University of New Orleans, Louisiana

J. C. (Hanco) Zwaan
National Museum of Natural History, Leiden, The Netherlands

Laboratory Growth of Gem Materials

Vladimir Balitsky
Institute of Experimental Mineralogy, Chernogolovka, Russia

James E. Butler
Naval Research Laboratory, Washington, DC

New Gem Localities

Edward Boehm
JOEB Enterprises, Solana Beach, California

Anthony R. Kampf
Natural History Museum of Los Angeles County, California

Robert E. Kane
Fine Gems International, Helena, Montana
GEMOLOGICAL RESEARCH CONFERENCE
San Diego, August 26–27

People • Places • Events

Top left and top right: GRC co-chairs James Shigley and Brendan Laurs. Middle: Oral presenter Richard Drucker analyzes pricing trends.

Above: Christoph Krahenmann, Mona Lee Nesseth, and Betty Sue King. Near right: Walter Leite and Cristina Baltar with Sergio Costa. Far right: Pornsawat Wathanakul reports on beryllium-treated blue sapphires.

Above: Dino DeGhionno and Emmanuel Fritsch. Directly above: the Saturday evening cocktail reception.
Two field trips to the Pala pegmatite district rounded out the GRC. Top left: Elizabeth R mine owner Roland Reed shows specimens to field trip participants. Top right: Israel Eliezri inspects a screening apparatus. Middle, left: Roland and Nata Schluessel stand next to a kunzite-bearing pocket. Below: Pala Chief mine owner Bob Dawson with field trip participants.

Above: Kunzite specimens from the Elizabeth R mine. Right: Stewart mine owner Blue Sheppard guides a group of participants.
Diamond and Corundum Treatments

Identification of Heat-Treated Corundum

Hiroshi Kitawaki (h-kitawaki@gaa-zenhokyo.co.jp), Ahmadjan Abduriyim, and Makoto Okano
Gemmological Association of All Japan (GAAJ), Tokyo

In accordance with September 2004 revisions to regulations concerning disclosure on gem identification reports, 27 laboratories belonging to the Association of Gemmological Laboratories Japan (AGL) began issuing descriptions of heat treatment in corundum. However, some reports from different gem laboratories were not consistent with the treated status of certain stones (especially between Japanese and overseas laboratories). Here we introduce the methods used in our laboratory for identifying heated and unheated corundum. In addition, we studied the identification characteristics of various kinds of heated synthetic corundum.

Detailed observation of internal features is very important to identify heat-treated corundum. Most crystal inclusions have a lower melting point than the host corundum, and may melt or become discolored by heat treatment. Liquid inclusions are often “healed” by heating, and some substances such as flux can be observed in fractures as residues. Additionally, absorption spectra in the UV-Vs and IR regions may show changes after heating.

Non-basalt-related blue sapphires heated in a reducing atmosphere show absorptions related to O-H bending that are not seen in unheated samples. Similarly, heated Mong-Hsu rubies show absorptions related to O-H bending because of the dehydration of diaspore inclusions. Laser tomography is extremely useful in the identification of heated and unheated corundum, and can clearly detect scattering images of crystal defects such as dislocations, as well as variations in fluorescence.

Synthetic ruby can also be heated, and the resulting alteration of internal features can make these stones more difficult to identify. In the early 1990s, large numbers of heat-treated Verneuil synthetic rubies flooded the gem market in parcels of Vietnamese rubies. Several years later, heat-treated Kashan synthetic rubies appeared on the market. These stones were larger and caused identification challenges in gemological laboratories. Recently, Ramaura synthetic rubies have been heated, and this created new problems in identification. When fused orange flux is observed under magnification, it can provide an indication of a heated Ramaura synthetic ruby. However, minute inclusions, color distribution, and growth zoning should be carefully observed, as they appear quite similar to those of natural ruby.

Treated Diamond: A Physicist’s Perspective

Mark E. Newton (m.e.newton@warwick.ac.uk)
Department of Physics, University of Warwick, Coventry, United Kingdom

The technologies for the synthesis of diamond via high pressure, high temperature (HPHT) and chemical vapor deposition (CVD) techniques are becoming more refined. The progress is created by scientists and technologists wishing to exploit the remarkable properties of diamond in a wide variety of applications, as well as producing gem-quality synthetic diamonds. Synthetic diamond can be treated, post synthesis, to modify the as-grown properties and to improve performance in some high-tech devices. Also, treatments can change the color of natural and synthetic gem diamond.

In parallel with the developments in diamond synthesis and treatments, the understanding of the defects (both intrinsic and impurity related) that influence the color of natural and synthetic diamond continues to improve. The physics of diamond defect interactions has been extensively studied over the last 30 years, and observing the defects that are created or destroyed through HPHT annealing, irradiation, and combinations of both has contributed to our present understanding of diamond. From this body of knowledge, we have developed the discrimination techniques that can be used in gem laboratories to identify treated diamonds.

In nature, annealing typically occurs at modest temperatures compared to those used in laboratory HPHT annealing.

Editor’s note: Underlined author signifies presenter.
Role of Beryllium in the Coloration of Fe- and Cr-doped Synthetic Corundum

Visut Pitsutha-Arnond, Tobias Häger, Pornsawat Waranakul, Wilawan Atichat, Jitrin Nattachai, Tin Win, Chakkaphant Sunthirat, and Boontawee Sriprasert

1Gem and Jewelry Institute of Thailand, Bangkok; 2Department of Geology, Chulalongkorn University, Bangkok; 3Institute of Gemstone Research, University of Mainz, Germany; 4Department of Earth Science, Kasetsart University, Bangkok; 5GEMOC Key Center, Macquarie University, Sydney, Australia; 6Department of Mineral Resources, Bangkok

X-ray irradiation and Be-diffusion heating experiments were performed on an iron-doped (colorless) synthetic corundum and a chromium-doped (pink) synthetic corundum to evaluate the role of beryllium in causing color in the Be-Fe-Al₂O₃ and Be-Cr-Al₂O₃ systems.

The iron-doped corundum, containing around 140–170 ppm by weight of Fe with negligible concentrations of other trace elements, was irradiated with X-rays (60 kV, 53 mA) for 30 minutes, then the color was faded for one hour with a 100-watt light bulb, and finally the sample was heat treated in a crucible with ground chrysoberyl in an electric furnace at 1780°C in an oxidizing atmosphere for 50 hours. The chromium-doped corundum, containing around 160–210 ppm by weight of Cr with negligible concentrations of other trace elements, was also irradiated with X-rays (80 kV, 4 mA) for 4 hours, then faded for 4 hours with a 100-watt light bulb, and subsequently heat treated with ground chrysoberyl at unspecified conditions by a Thai treater. At each stage of the experiments, the samples were photographed and UV-Vis absorption spectra were recorded.

The irradiation and Be-diffusion experiments on the iron-doped synthetic corundum created defect centers that had similar UV-Vis absorption curves and produced yellow coloration. The yellow color was unstable when induced by irradiation, but was stable after Be diffusion.

Experiments on the chromium-doped synthetic corundum produced orange coloration (and similar UV-Vis absorption patterns) by both irradiation and Be-diffusion heating methods. Again, the orange color was unstable when induced by irradiation (and quickly faded to pink), but remained stable after Be diffusion. These results confirm that divalent Be acts as a stabilizer of defect centers or color centers in iron-doped and chromium-doped synthetic corundum. Hence, the spectrum produced by the irradiation of Fe-doped or Cr-doped synthetic corundum was attributed to “metal-related unstable color centers,” while that produced in synthetic corundum doped with Be+Fe or Be+Cr was caused by “Be²⁺ + metal-related stable color centers.”

The Treatment of Ruby and Sapphire, with Implications for Gem Identification and the Integrity of the Product

Kenneth Scarratt (ken.scarratt@gia.edu)
GIA Research (Thailand), Bangkok

Corundum treatments include impregnating fractures with oils, heating to a variety of temperatures to clarify and change color, sealing fractures through “flux-assisted healing,” over-growing with synthetic corundum, diffusing foreign elements to change color (e.g., Ti for blue and Be for yellow to orange), and the filling of fractures and cavities with glass. While some of these treatments have been carried out in a rudimentary manner for a long time (see figure), in line with advancements in technology they have become highly developed over the last four decades. The latest evolution has resulted in the availability of beryllium-diffused blue sapphires.

With advanced treatment technology, it is now possible to transform large volumes of previously unsalable opaque or
fractured corundum into transparent stones with distinct and salable colors. These advances have created concern about the integrity of the product, particularly over the last decade because of an increased emphasis on proper treatment disclosure. A combination of technical ability and demand on the mass marketing level has encouraged the production of ruby and sapphire hybrids, where the distinction between natural, treated, and synthetic is becoming increasingly blurred.

Proper treatment disclosures depend on the development and application of effective identification techniques in gemological laboratories. While simple and inexpensive techniques are still effective for detecting many corundum treatments, others such as low-temperature heating and some situations involving beryllium diffusion require a more sophisticated approach. The level of testing sophistication required exceeds the reach of most gemological laboratories, and this is resulting in a situation where only the extremely well-equipped and well-funded laboratories can offer definitive services to support proper treatment disclosure.

It appears likely that the majority of existing gemological laboratories will eventually become limited in their scope and will need to “refer” stones to specialists within the few well-equipped establishments worldwide. If the industry is to receive the proper support, this change will require more cooperation and less competition between gemological laboratories.

Indications of Heating in Corundum from Experimental Results

Chakkaphan Sunthirat (c.sunthirat@gmail.com)1,2, Kritnaya Pattamala2, Somnardee Sakkaravej2, Sureeporn Pumpeng2, Visut Piaotha-Arnond1,2, Pornsawat Wathanakul1,4, Wilawan Atichat1, and Boontawee Sriprasert1,3

1Gem and Jewelry Institute of Thailand, Bangkok; 2Department of Geology, Chulalongkorn University, Bangkok; 3Department of Mineral Resources, Bangkok; 4Department of Earth Science, Kasetsart University, Bangkok

Heating experiments were conducted to improve the color in gem corundum from several deposits. The corundum samples came from both metamorphic-type (e.g., Ilakaka-Sakaraha in Madagascar and Songea in Tanzania) and basaltic-type (e.g., Bo Phloi in Thailand) origins. Experimental heat treatments were performed using electric furnaces, with maximum temperatures ranging from 800°C to 1650°C for durations of 1–3 hours at each peak temperature. Heating in an oxidizing environment was done to remove the blue shade of the purple varieties; however, under this condition a yellow coloration can be developed in some corundum. Heating in a reducing environment was done to intensify the color of the blue sapphires. Physical and chemical properties were investigated before the heating experiments; in addition, color change, absorption spectra, chemical analyses, and alteration of inclusions were carefully observed after each heating step. The experiments clearly revealed that optimal temperatures to reduce blue coloration ranged between 800°C and 1000°C, whereas higher temperatures (at least 1400°C) were more suitable for intensifying the blue component of the corundum.

Among the FTIR absorption peaks found in corundum, the O-H stretching peak at about 3309 cm⁻¹ is most crucial for identifying high-temperature treatments, as suggested by many researchers. However, the step-heating experiments yielded ambiguous results on the effect of high-temperature heating (in both oxidizing and reducing environments) on the 3309 cm⁻¹ peak. Some samples of both basaltic and metamorphic types contained this O-H stretching peak before heating, and it decreased rapidly or disappeared after the step-heating experiments. However, this OH peak was absent from some unheated stones, and then developed during some stages of heating, but was subsequently destroyed at higher temperatures. A few of the sapphires appeared to have no OH peak before or after heating. Based on this study, FTIR spectra are unlikely to provide conclusive evidence for the high-temperature treatment of corundum.

Physical changes in some inclusions were observed during the step heating. Small heating fractures and tension discs appeared to develop even at the lowest temperature and shortest heating duration (800°C for one hour), and gradually expanded at higher temperatures. Turbidity in tiny zircons was observed at 800°C, whereas large zircon inclusions usually became turbid at temperatures of at least 1400°C. Rutile needles started to dissolve into the host corundum at temperatures as low as 1600°C. Mica inclusions appeared to show some changes at 1000°C. Brown-to-black rutile was altered to reddish brown after heating at 800°C, especially in an oxidizing environment.

HPHT Treatment of Type IaB Brown Diamonds

Jef Van Royen (j.van.royen@wtocd.be), Filip De Weerdt, and Olivier De Gryse
Hoge Raad voor Diamant (HRD) Research, Lier, Belgium

The transformation of brown diamonds to colorless using high pressure, high temperature (HPHT) processing has become one of the most important diamond treatments. The common candidates for this treatment are type Ia brown stones. However, type IaB brown diamonds also can be turned (near) colorless by HPHT treatment. The properties of HPHT-treated type IaB diamonds have been studied extensively, but relatively little information is available about the changes in type IaB material as a consequence of this treatment. Therefore, we studied the characteristics of 10 type IaB brown diamonds before and after HPHT processing.

The rough diamonds were fashioned into rounded single-cut stones ranging from 0.20 to 0.53 ct. These diamonds were characterized with UV-Vis and IR absorption spectroscopy, and with Raman photoluminescence spectroscopy. Visual and instrumental color grading were performed, and clarity grades were determined. Moreover, every stone was examined with a DiamondView fluorescence imaging instrument and a D-Screen diamond screening device.

After characterization, the diamonds were subjected to HPHT treatment. Five samples were heated to 2200°C for 10 minutes, and five stones were subjected to 2300°C for 3 minutes, at stable conditions for diamond. Subsequently, the samples were polished to round brilliants with weights ranging from 0.16 to 0.41 ct, and the same characterization methods were applied.
The diamonds originally showed B-center concentrations between 5 and 50 ppm. After treatment, the brown color disappeared. They showed color grades ranging from G to O, with the more intense colors associated with the higher-temperature treatment. This is related to the production of isolated nitrogen impurities (C centers). When examined with the D-Screen, all samples showed an orange light indication, identifying them as diamonds that should be further tested for HPHT treatment.

In conclusion, type IaB diamonds can be made (near) colorless with HPHT treatment at relatively low temperatures. Gemological laboratories should systematically test near-colorless with HPHT treatment at relatively low temperatures. This is related to the production of isolated nitrogen impurities (C centers). When examined with the D-Screen, all samples showed an orange light indication, identifying them as diamonds that should be further tested for HPHT treatment.

To explain these phenomena, we postulate an increase of Ti$^4+$ solubility by building clusters/nanoclusters of BeTiO$_4$. The solubility of titanium can be explained by charge compensation of the Ti$^4+$ with the Be$^{2+}$ replacing two Al$^{3+}$ in the corundum structure. In addition to MgTiO$_3$ and FeTiO$_3$ clusters, BeTiO$_4$ would also readily be incorporated into the corundum. However, the beryllium in the corundum structure could possibly be situated in both octahedral and/or tetrahedral sites. Further experiments and analyses are still being carried out to confirm the incorporation of beryllium into blue sapphires.

Beryllium-Assisted Heat Treatment Experiments on Blue Sapphires

Pornsawat Watanakul (pwathanakul@gmail.com)1,2, Tobias Häger3, Wilawan Atichat2, Visut Pisutha-Arnon2,4, Tin Win5, Pantaree Lomthong1, Boontawee Sripraerat1,6, and Chakkaphant Suthirat2,4

1Department of Earth Science, Kasetsart University, Bangkok; 2Gem and Jewelry Institute of Thailand, Bangkok; 3Institute of Gemstone Research, University of Mainz, Germany; 4Department of Geology, Chulalongkorn University, Bangkok; 5GEMOC Key Centre, Macquarie University, Sydney, Australia; 6Department of Mineral Resources, Bangkok

Beryllium has been used extensively in corundum heat-treatment processes since at least 2000. Corundum samples of metamorphic origins from Madagascar and Sri Lanka with specific internal features (milky, silky, or silky-milky) were heat treated for this study, with and without Be, by blue-sapphire experts in Thailand. Prior to the heating experiments, the samples contained a moderate amount of fine inclusions; the milky ones were translucent and were near colorless to very light blue. The samples with milky inclusions were also translucent, and were colorless to a pastel light blue color; they were commonly zoned with internal silvery reflections. The silky-milky category contained a mixture of these two types.

Each sample was cut into 3–4 pieces, and an untreated portion from each group was retained. The samples were studied using electron microscopy, FTIR and UV-Vis-NIR absorption spectroscopy, and LA-ICP-MS; the latter three techniques were utilized after each step of the heating experiments. SEM-EDS investigations showed that the milky stones contained what were probably very fine particles of rutile and ilmenite, whereas the milky corundum contained rutile and possibly members of the ilmenite-geikielite series.

The corundum samples were heated (without Be) in a fuel furnace to about 1650°C for 70 hours in a reducing atmosphere. The milky type mostly turned transparent blue, whereas the milky and silky-milky sapphires became blue but had a turbid appearance. These turbid samples were then reheated with Be in an electric furnace at 1650°C for 70 hours in an oxidizing atmosphere. After this process, the sapphires became more transparent and lighter in color. These stones could be further enhanced (color intensified) by reheating at ~1500°C for a few hours in a reducing atmosphere.

In conclusion, type IaB diamonds can be made (near) colorless with HPHT treatment at relatively low temperatures. Gemological laboratories should systematically test near-colorless with HPHT treatment at relatively low temperatures. This is related to the production of isolated nitrogen impurities (C centers). When examined with the D-Screen, all samples showed an orange light indication, identifying them as diamonds that should be further tested for HPHT treatment.

In conclusion, type IaB diamonds can be made (near) colorless with HPHT treatment at relatively low temperatures. Gemological laboratories should systematically test near-colorless with HPHT treatment at relatively low temperatures.

Gem Characterization Techniques

Applications of LA-ICP-MS (Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry) to the Gemological Field

Ahmadjan Ablavin, (ahmadjan@gaiz-zenhokyo.co.jp) and Hiroshi Kitawaki

Gemological Association of All Japan (GAAJ), Tokyo

In recent years, gemological laboratories have been faced with diverse gem identification issues that are difficult to solve and have caused confusion for many gemologists. Chemical analysis by LA-ICP-MS has been successfully applied to certain gemological problems that in some cases were not solvable by the other techniques that are routinely available in gemological laboratories.

For example, high-temperature Be-diffusion treatment of corundum has become widespread, but this element cannot be detected by most analytical instruments and only trace amounts of it are necessary to alter corundum color. LA-ICP-MS can perform a local ”micro-destructive” (several micrometers to a hundred micrometers) analysis to determine the element composition, and can detect the presence of Be at the parts-per-million level.

There is demand for geographic origin determination for high-value colored stones such as ruby, sapphire, emerald, and Cu-bearing tourmaline. Without high-quality, detailed analytical data, indications of origin may sometimes be unreliable, even when based on the experience of laboratory gemologists and data uniquely collected by that laboratory. To move away from subjective opinion, a more sophisticated scientific basis is needed for geographic origin determination, such as chemical fingerprinting using quantitative chemical data. For example, diagrams for the following elements are helpful for determining geographic origin: Cr$_2$O$_3$/Ga$_2$O$_3$ versus Fe$_2$O$_3$/TiO$_2$ for corundum, Ca$_2$O +K$_2$O versus Na$_2$O +MgO and Ga-Zn-Li for emerald, and Ga+Pb versus Cu+MnO and Cu+MnO versus Pb/Be for Cu-bearing tourmaline.

Identifying the parent oyster species of cultured pearls is another challenge for gemologists. Recently white-lip cultured pearls of relatively small size (about 8 mm in diameter) have appeared on the market. Conversely, a few Akoya cultured pearls of 10 mm or larger are also on the market, and
they command a much higher price than white-lip cultured pearls of the same size. Therefore, it is important to distinguish these two materials despite their similar appearances.

Shell beads manufactured from the freshwater *Anodonta* mussel have been used for bead nuclei in cultured pearls. Depletion of this mussel has resulted in the use of nuclei made of shell from the saltwater mollusk *Tridacna squamosa*. Due to the lower durability of this substitute, and the requirement under the Washington Convention that export of *Tridacna* products take place only with official permission, the identification of shell-bead nuclei in cultured pearls is becoming a requirement for the pearl industry. Using a laser beam diameter of only 30 µm to drill a hole through a sample, the concentration of trace elements such as Li, Si, Ti, Mn, Fe, Ga, Sr, Ag, Sn, and Ba can be used to identify the bead material.

High-Energy Ultraviolet Luminescence Imaging: Applications of the DTC DiamondView for Gem Identification

Christopher M. Breeding (christopher.breeding@gia.edu), Wuyi Wang, Andy H. Shen, Shane E. McClure, James E. Shigley, and Dino DeGionno

The use of UV fluorescence and phosphorescence for the identification of diamonds and colored stones is not new. Gemologists have known for decades that natural and laboratory-grown gems often have distinctive reactions to UV radiation. Treatments commonly cause changes in fluorescence reactions as well. While standard handheld UV lamps are excellent for the observation of bulk fluorescence colors and distribution patterns, they are not very effective in revealing weak and/or highly detailed patterns. The Diamond Trading Company's DiamondView instrument uses very high-energy ultra-shortwave (<230 nm) UV radiation to induce fluorescence in diamond and reveal growth patterns that facilitate the separation of natural from synthetic stones. The instrument incorporates a high-resolution camera along with aperture and exposure adjustment features to digitally capture even the faintest luminescence. When combined with gemological observations and/or high-tech spectroscopic analysis (such as laser-induced photoluminescence), the high-energy UV imaging capability of the DiamondView has applications that extend far beyond synthetic diamond identification. For example, the occurrence and localized distribution of many defect centers such as H3 in diamond can be clearly resolved even when there is no other gemological evidence for their presence. In many cases, it is possible to detect HPHT treatment of type IIb blue diamonds through the presence or absence of particular luminescence features such as dislocation networks and red phosphorescence (see figure). High-energy UV fluorescence imaging is also useful for colored stone identification. For example, subtle curved growth zoning in lightly colored or high-clarity synthetic sapphires can often be detected using this technique. Various types of fracture-filling materials commonly used in ruby, sapphire, and emerald can also be seen with the instrument. The DiamondView’s ability to capture high-resolution images of very weak or highly detailed fluorescence patterns in diamonds and colored stones establishes it as another important tool for gemological research and future identification challenges.

Imaging Spectroscopy: A Developing Frontier for Gem Analysis

Nicholas Del Re (nickd@eglusa.com)

Visual and optical cues are highly valuable for identifying and characterizing gems. In the past 25 years, increasingly sophisticated treatments and enhancements have impacted the gem trade. In response, measurements of gems have been evolving from qualitative to more quantitative analysis. Advanced instrumentation such as UV-Vis-IR and Raman spectroscopy, XRF, SEM, SIMS, and LIBS are now used by gemological laboratories. These methods are highly beneficial, but they have shown limitations in sampling and detection when performing compositional and spatial analyses. For example, an instrument will sample a specimen for a selected number of times after it has been positioned in the sample chamber. Often, expected results are not observed, which may initiate additional testing that requires reorientation of the specimen in the chamber and significant time consumption. As the data are typically obtained from a small area, they provide limited results in most cases.

Imaging spectroscopy (i.e., hyperspectral or chemical
The Present and Future Potential of Raman Spectroscopy in the Characterization of Gems and Minerals

M. Bonner Denton (mbdenton@u.arizona.edu)1 and Robert T. Downs2

1Department of Chemistry, University of Arizona, Tucson; 2Geosciences Department, University of Arizona, Tucson

A number of important breakthroughs have occurred in recent years that allow Raman spectroscopy to be considered as a routine but powerful analytical tool for identifying and characterizing natural crystalline compounds. The long-standing limitation in sensitivity and the detection limit capabilities of conventional Raman have now dropped to the levels of parts per million and lower. These developments have resulted from a combination of technological advances in optical components, sources, and detector technology.

Advanced technologies developed for fiber-optic telecommunications are now being applied to implement an entirely new generation of miniature spectrometers. Optical systems for entire spectrometers can be built in volumes of cubic millimeters. New approaches for optical component fabrication, mounting, and alignment have been developed that yield highly robust systems capable of providing exceedingly high levels of performance. Performance considerations and design “trade-offs” include resolution, excitation, wavelength, sensitivity, size, and weight. A new generation of handheld Raman spectroscopic instrumentation is currently being introduced that will find application in diverse fields such as process control, product quality control, medical diagnostics, and environmental analysis, as well as in the analysis of gems and minerals.

The use of Raman spectra to assist in the nondestructive identification of gems, however, requires a credible database as well as appropriate search algorithms. Such a database is currently being developed by the RRUFF project as a public domain asset (http://rruff.info), sponsored by Mike Scott.

Robert T. Downs (rdowns@u.arizona.edu)1 and M. Bonner Denton2

1Geosciences Department, University of Arizona, Tucson; 2Department of Chemistry, University of Arizona, Tucson

Recent advances in the miniaturization and optimization of Raman spectroscopic techniques provide the promise of handheld instruments that can be used to quickly and routinely identify and characterize naturally occurring crystalline compounds. For these reasons, we are building a database of Raman spectra that may be used to identify and characterize minerals and inorganic gem materials. The RRUFF project is the largest, most comprehensive research study of minerals ever undertaken. Samples of all known minerals are being subjected to X-ray diffraction to obtain cell parameters, constrain the symmetry, and provide identification. When required, crystal structures are also being determined. This is especially necessary when variations in site occupancies can affect the Raman spectral behavior. Electron-microprobe analysis is being conducted on each sample to obtain an empirical formula. Fragments of the characterized samples are oriented for Raman spectroscopy in the directions necessary to measure symmetry effects of orientation. These fragments are glued onto titanium pins and polished to ensure the highest-quality spectra.

The Raman spectrum of a mineral is analogous to its diffraction pattern, inasmuch as it provides a unique “fingerprint” of
the mineral, influenced by the crystal structure and the bond strengths of the constituent arrangement of atoms. Therefore, a complete library of spectra is essential to the accurate identification of unknown samples. Also under investigation is how well a mature Raman database can be used to estimate chemical composition, site occupancy, and order-disorder, as well as to determine the orientation of the sample. At the time of writing this abstract, the database contains about 1,700 minerals in various stages of examination. Most of the major rock-forming minerals are present. About 25 samples are being added to the project each week. The data are freely available via the Internet at http://rruff.info.

Gem Characterization: A Forecast of Important Techniques in the Coming Decade
Emmanuel Fritsch (emmanuel.fritsch@cnrs-imn.fr)
Institut des Matériaux Jean Rouxel, Nantes, France

Such a “crystal ball” subject is by nature difficult, as no one can pretend to truly predict the future. Nevertheless, trends can be identified, some that have been recently established over a long period of years, while others are newer, more subjective, and tentative. Gemologists look for a technique that will make it possible to perform a certain identification task for which existing techniques fail. This is called an enabling technology, and new techniques important in the coming decade will belong to this category.

Let us not forget that the foundation of good gemological work is observation supported by some simple tools and a good binocular microscope, the so-called “classical gemology.” This approach will remain the most useful and often the only necessary step. It is too often occulted by hyped “high-tech” instruments. Also, it is clear that some classical physics techniques, already routine in gemology, will continue to play an important role. These include UV-Vis and IR absorption spectroscopy, Raman scattering, and EDXRF chemical analysis.

There are three domains in which useful progress can be predicted, as they all look at more subtle parameters than those commonly explored so far. The first is luminescence. Emission spectra proved to be an enabling technology for the detection of HPHT-treated diamonds. But there are many more possibilities, in particular the use of excitation spectra and of time-resolved luminescence, which offer an almost infinite range of nondestructive possibilities to analyze gem materials.

Second, trace-element analysis is certainly not new to gemology, but it is likely to develop considerably in the coming decade. Advances will be motivated by identification and geographic origin issues. LIBS, LA-ICP-MS, and of course EDXRF can be useful. They each present different advantages and drawbacks in terms of sample damage, accuracy, cost, and detection of light elements.

Third, isotopic studies appear promising, as they have moved into the realm of nearly nondestructive techniques, with SIMS and other ion probes. They have been applied successfully using 18O alone to determine the origin of emeralds, and extensive work on corundum should lead to useful results. Many other isotopes are under study, for example, in diamond.

It is difficult to conceive that developing all these new, typically costly technologies will be achieved successfully by isolated institutions. The building of well-documented, useful databases will likely foster more collaboration between gemological, academic, and industrial labs.

Autoradiographic Investigations of Impurity Distributions in Diamond
Delara S. Khamrayeva (delara@rambler.ru) and Yulia P. Solodova

1Institute of Nuclear Physics of Academy of Sciences, Ulugbek, Tashkent, Uzbekistan;
2Moscow State Geological Prospecting University, Moscow, Russia

Note: The senior author was unable to deliver the presentation due to a travel delay, and it could not be rescheduled.

This work aims to understand the influence of Co, Ni, Ti, Cr, Mn, and Cu impurities on the quality, microstructure, and morphology of type I natural diamond using the autoradiographic technique. The first step in our study was the determination of the trace-element composition of the diamonds using instrumental neutron activation analysis (INAA) and instrumental gamma activation analysis (IGAA). The diamond specimens were irradiated by neutrons in a nuclear reactor, and for INAA the radionuclides were identified by their energy lines in a gamma spectrum and by their half-life periods. Quantitative trace-element contents were measured by comparing the radionuclide activity of the element in the diamond to that of a standard. For IGAA, the gamma spectra of irradiated samples were measured by means of a Ge(Li) detector and multi-channel pulse analyzer.

The second step involved a study of the spatial distribution of trace elements in the diamonds by activation radiography. This method is based on the registration of secondary beta radiation. After irradiation, the radioactive samples are placed on photographic emulsion, which is used as a detector. The sensitivity of this technique was 108 beta particles/cm2, and the spatial resolution of the radiograph was about 200–300 µm. A selective autoradiograph was obtained for each trace element, based on the assessment of the nuclear physical parameters, the concentration of radionuclides, and the range of travel of the beta particles. The exposure varied from one hour for short-lived radionuclides to 10 days for long-lived radionuclides.

Using INAA, we found the following trace elements (0.001–200 ppm) in 156 diamonds from Siberia (0.04–1.6 ct): Mg, Ca, Sc, Ti, Mn, Ni, Co, Cr, Cu, Zn, Fe, Sr, Y, Zr, Ru, Sb, Ba, Ce, Eu, Ir, Au, and U. For the autoradiographic study, we selected 12 cubic, four octahedral, and two rounded rhombohedral diamond crystals that did not contain any eye-visible inclusions. The selected crystals were sliced into plates oriented parallel to {100}, {110}, or {111}. The plates ranged from 3 to 5 mm, and their thickness was 200–300 µm. Traces of Co (0.01–1 ppm) were detected in all samples. The Co autoradiograph showed lamellar, zonal, micro-zonal distributions of this
element in the octahedral and rhombo-dodecahedral crystals. Traces of Cu (0.1–10 ppm) were concentrated in the central part of the cubic crystals, or in fibrous portions of the other cubic crystals. Similar concentrations of Cu also were found in a cross-like distribution in the rhombo-dodecahedral crystals. Traces of Mn (0.1–1 ppm) were uniformly distributed in the octahedral and rhombo-dodecahedral crystals, but were concentrated in the central or fibrous portions of the cubic crystals.

Automating the Infrared and Raman Spectral Analysis of Gemstones
Steve Lowry (steve.lowry@thermo.com) and Jerry Workman
Thermo Electron Corporation, Madison, Wisconsin

In many gemological laboratories, FTIR and Raman spectroscopy are considered advanced analysis techniques requiring a knowledgeable scientist to visually examine the spectrum to provide a reliable assessment. However in many industries, multivariate statistical analysis techniques are frequently employed to automatically extract valuable information from FTIR and Raman spectra. These techniques treat the spectra as vectors and apply sophisticated mathematical algorithms to compute a result based on the sample vector and a set of reference spectra of fully characterized samples. Most of these techniques have a quality index or standard error value that can be used as a threshold for passing the sample or referring it to a technician for further review. Here we provide examples of how these automated analysis techniques might be applied to problems described in the recent gemological literature.

1. Sample identification by infrared spectral searching: A correlation or similarity value is calculated between the spectrum of a sample and each reference spectrum in a “library.” The reference spectra that are most similar to the sample are identified and reported with a match value. Our example identifies a green stone as a hydrothermally grown synthetic emerald.

2. Material verification: The QC Compare algorithm can be used to verify the composition of a stone. For diamond verification, you might include spectra from all types of diamonds in the diamond class, but for diamond typing you would create separate classes for each type of diamond.

3. Confirming the presence (or absence) of an important peak: The presence or absence of small peaks in the spectrum due to trace-level “impurities” may indicate that a stone is synthetic or treated. Classical least-squares techniques (see figure) determine the amount of each reference spectrum that is required to minimize the difference between the sample spectrum and a linear combination of the reference spectra. Our example measures the small hydroxyl peak at 3310 cm\(^{-1}\) that is generally present in the spectrum of a natural ruby or sapphire, but disappears when the stone has been beryllium-diffusion treated.

4. Quantitative analysis of trace components: The intensity of a peak in the infrared spectrum is proportional to the concentration of the component and the path length of the infrared beam. An example of this is calculating the concentration of the various nitrogen types in a diamond.

Automated workflows can be created that combine these computational techniques with instrument setup and spectral preprocessing to provide an easy, reliable technique for analyzing gemstones.

X-ray Diffraction Using Area Detectors for Mineral and Gem Characterization
Jeffrey E. Post (postj@si.edu)
National Museum of Natural History, Smithsonian Institution, Washington, DC

X-ray diffraction is the fundamental method for determining crystal structures and for identifying crystalline phases. A powder X-ray diffraction pattern provides a “fingerprint” that identifies a gem, mineral, or other crystalline material. During the past decade, technological advances in detectors have revolutionized the use of X-ray diffraction for a variety of crystallographic applications. Area CCD (charge-coupled device) and imaging plate detectors are orders of magnitude more sensitive to X-rays than traditional films and scintillation or solid-state detectors. New-generation diffractometers and microdiffractometers fitted with area detectors and conventional X-ray tubes make it possible to routinely collect high-quality X-ray diffraction patterns from a broad variety of samples using typical exposure times of 5–10 minutes. The area detectors permit collection and integration of the full set of Debye-Scherrer diffraction rings, providing improved counting statistics and reduced preferred orientation effects. The combination of the large-area detector, full pattern
integration, and sample oscillation/rotation permits the nondestructive collection of “powder” diffraction patterns from single crystals, including faceted gemstones. Because in most cases it is possible to collect patterns that do not have preferred orientation, the success rate for identification using search-match software and the International Centre for Diffraction Data database is extremely high. The method is particularly useful to gemologists for quick and accurate identification of rare and unusual, or new, gems; for example, we recently identified the first reported wadeite gemstone, for which diagnostic information is not included in standard gemological databases. Area detector diffractometers also provide information about the crystallographic orientation of gemstones. Numerous examples are available of X-ray diffraction studies using a Rigaku D/MAX Rapid microdiffractometer with an imaging plate detector for a variety of samples, including powders, single crystals, and mounted and unset gems.

Characterization of Nanofeatures in Gem Materials
George R. Rossman (grr@gps.caltech.edu)
California Institute of Technology, Pasadena

The inclusions in gem minerals that are commonly observed with an optical microscope occur at a scale of a micrometer or larger. In addition to these inclusions, there are also a multitude of inclusions and features that are larger than the individual atoms that cause color in common gems, but are so small that they cannot be clearly resolved with optical methods. These features can be nearly 1,000 times smaller than features seen with optical microscopes, and are measured in nanometers. Such features can cause iridescence, opalescence, asterism, and turbidity in gem materials. High-resolution scanning electron microscopy allows us to image features on the nano-scale. When images are combined with chemical analysis and electron diffraction patterns, a whole world of previously inaccessible mineralogy becomes available for investigation.

Opals are a classic example of a gem that contains nano-scale features that are the origin of color. A microscopic journey into opals will demonstrate the spectacular differences that occur when the nanofeatures (silica spheres) are arranged either in ordered or disordered patterns. Iridescence in garnets, feldspars, and several ornamental stones is also due to submicrometer-sized features. Star phenomena in stones occur because of oriented inclusions. Both the bodycolor and asterism in rose quartz arise from inclusions of an aluminoborosilicate phase related to dumortierite that are a few hundred nanometers in width. Stars, and particularly turbidity, in sapphire and ruby have been long attributed to myriad minute rutile inclusions. Rarely have these inclusions been identified by direct analysis. High-resolution imaging of the submicroscopic inclusions often fails to find rutile, but instead finds an aluminum oxide phase with a stoichiometry that is consistent with diaspore.

An additional observation frequently made during high-resolution imaging is that the surface quality of stones varies widely. Sub-micrometer-scale surface features from the polishing process are often observed at high magnification and illustrate that there is a wide range of variation in the quality of surface finish.

Infrared Spectra of Gem Corundum
Christopher P. Smith (christopher.smith@gia.edu) and Carolyn van der Bogert
GIA Laboratory, New York

Hydrogen may be incorporated into corundum, forming structurally bonded OH groups. These create a variety of charge-compensation mechanisms that result in specific bands or series of bands in the mid-infrared region of the absorption spectrum. OH groups may occur naturally, or they may be induced or removed through heating.

Commonly, OH absorptions occur as a series of peaks, even though the individual peaks may or may not relate to a singular charge-compensation mechanism. For example, a common OH peak positioned at 3309 cm$^{-1}$ is often associated with additional peaks at 3295 (shoulder), 3265, 3232, and 3186 cm$^{-1}$. A number of other such correlations have been made, and a naming convention was developed to facilitate rapid reference. These include the 3309-series, 3161-series, 4230-series, 3394-series and 3060-series, as well as others. The association of these series with certain color varieties of corundum and various geologic environments was studied, as well as their application toward identifying the unheated or heated condition of a stone.

Past researchers have attributed the 3161 cm$^{-1}$ band (3161-series; see figure) to OH groups involved in charge-compensa-

![IR Absorption Spectrum](image.png)
Diamonds with impurities such as nitrogen, boron, and hydrogen (as determined by spectroscopic methods) had weak-to-moderate degrees of defect deformation. Most of the irradiated natural diamonds showed weak-to-moderate degrees of defect deformation. Colorless and yellowish green diamonds that were HPHT treated from natural brown starting material showed moderate-to-strong degrees of defect deformation. HPHT-grown synthetic diamonds showed a moderate degree of defect deformation.

General Gemology

Color Quantification: A Spectrographic Imaging Approach
Donna Beaton (dbeaton@eglusa.com)

EGL USA, New York

The colored stone market would benefit from a universally accepted color classification system developed from gemstone-specific analytical methods. In the corundum family, it is important to accurately categorize ruby, sapphire, and fancy sapphire colors such as pink, violet, orange, and the highly prized “padparadscha.” Apart from defining tolerances, as in corundum, a well-designed system should also evaluate the extent of change-of-color, matching, or metamerism. This report focuses on developing methods to evaluate gemstone color and define color ranges, using padparadscha sapphire as the case study and incorporating a previously accepted definition for that gemstone (i.e., orangy pink or pinkish orange, of medium-to-light tone, and low-to-intense saturation; see, e.g., Crowningshield, 1983).

Aside from the difficulty of correlating the perception of color to the physical properties that scientists are able to measure, there are additional problems of assessing the color of transparent, faceted, crystalline materials that are not encountered by most industries that exercise color standards. With gemstones one must consider not only the light that is reflected off the surface, but also light that is transmitted through the stone, and light that has traveled through the stone and is reflected off facets internally. The doubly refractive nature of many gemstones also influences the nature of light that is returned to the eye. So, in choosing a technique/instrument for this study, it was important to find one able to accommodate the nature of the gemstone as well as its interaction with a light source.

Quantitative color information was gathered using a GemSpec digital imaging spectrophotometer manufactured by GemEx Systems. This instrument uses a high-intensity xenon light source to measure the spectral response of the entire unmounted stone in a face-up position. Data for specific lighting conditions and CIE-defined standard light types are obtained through algorithms utilizing spectral responses. In this study, a standard CIE illuminant, a standard 2° observer configuration, and suffuse lighting conditions were used. These conditions were chosen to best represent the majority of gem-buying environments, in which artificial "full-spectrum"
lighting is used. The data were analyzed in Munsell Notation, CIE xyY, and CIELAB color models. For the Munsell system, a physical model was built, with data points that represent the average overall color of each stone from each subgroup: ruby, pink sapphire, fancy sapphire, orange sapphire, orangy padparadscha, padparadscha, and pinkish padparadscha. For the CIE color spaces, the data were plotted on graphs (see, e.g., figure). The results of this study indicate that a three-dimensional color space could indeed be defined that correlates with a person’s perception of what color a padparadscha sapphire should be, and could serve as a criterion to evaluate future padparadscha candidates.

REFERENCE

Rare Reverse Color Change in a Blue Zircon from Myanmar (Burma)
George Bosshart (george.bosshart@swissonline.ch)1 and Walter A. Balmer2
1Horgen-Zurich, Switzerland; 2Bangkok, Thailand

A 6.45 ct round brilliant-cut zircon originating from Mogok exhibited an exceptional color change. The gemstone appeared violetish blue in daylight and bluish green in incandescent light. Identical reactions were observed with the daylight-equivalent illuminant D65 and the incandescent illuminant A in a Gretag-MacBeth light booth (for method and terminology, see Liu et al., 1999). This phenomenon is opposite to the color change of alexandrite, which displays green hues in daylight and purple hues in incandescent light. CIELAB color analysis of this zircon with a Zeiss MCS 311 multichannel color spectrometer revealed a 75° change in hue angle when recorded in a direction perpendicular to the optic axis, the change in hue angle was 65°.

Besides the main constituents of zircon (Zr and Si), qualitative chemical analysis by EDXRF showed evidence of hafnium as a minor element and traces of uranium. The latter identification was supported by radiation spectroscopy. Additional minor EDXRF peaks correlated to erbium and holmium; however, the presence of either element was not fully confirmed. Gaft et al. (2005) listed ytterbium, erbium, and dysprosium as the predominant rare-earth elements (REEs) in natural zircons.

The reverse alexandrite effect of this zircon is due to uncommon and strongly polarized absorption features in the visible region of the spectrum. They consisted of at least 10 multiband absorption maxima dispersed across the entire 400–700 nm range (and of another eight groups of bands up to 1800 nm in the near-infrared region). The absorption peaks located at 656/661, 590, and 683/691 nm (in order of decreasing amplitude) were due to U4+. All other bands were due to traces of REE (George R. Rossman, pers. comm., 2006).

No indications of thermal treatment, such as altered inclusions, were detected in this zircon. The only microscopic features were indistinct growth planes and one mirror-like fracture. Raman spectra did not deviate from those of nonheated zir-
contributor to the large diamond price increases experienced in recent years. Not since the early 1980s has the industry experienced such rapid price hikes. However, the change in distribution channels has effectively created a more efficient system for selling diamonds at all levels, thereby reducing profit margins. So, the full rough price increases have not been carried through from rough to mid-level distribution, to the retailer, and to the consumer.

References

Social, Political, Economic, and Gemological Impacts on Pricing Trends

Richard B. Drucker (rdrucker@gemguide.com)

Gemworld International Inc., Northbrook, Illinois

For more than two decades, Gemworld International has been tracking prices of colored stones and diamonds. Historical trends in pricing during this time period have shown fluctuations according to social, political, economic, and gemological factors. A prediction of future trends based on past history will provide insight for buying decisions in the years ahead. A variety of factors influencing gem pricing are reviewed in this presentation.

The introduction of certain treatments caused prices to decline in some gem varieties. In the mid-1990s, industry awareness that fractures in emeralds were being filled with Opticon was disastrous for the emerald market. The treatment caused an immediate scare and a decline in confidence in emeralds. Today, acceptance and proper disclosure of emerald treatments have improved, and the emerald market is rebounding.

A downturn in ruby prices began in the mid-to-late 1990s. Heat-treated rubies (often with glass residues) from Mong Hsu, Myanmar, flooded the market earlier that decade. The large supply of low-cost material, coupled with a decrease in demand, created a severe decline in ruby prices. Prices have plateaued and are expected to rise.

Beryllium diffusion of sapphire and ruby continues to be a problem for the industry. While struggling with their detection, we are now faced with an abundant supply of goods in the $50–$100/ct range. This has negatively impacted the price of traditionally heated sapphires as well as beryllium-treated sapphires. Conversely, prices of untreated gems are going up as demand for these increases.

Terrorism in 2001 that was falsely linked to tanzanite caused a temporary sharp drop in prices for that gem. Political action by the gem trade, combined with a reduction in supply, have caused tanzanite prices to rise.

The new Supplier of Choice system of diamond distribution imposed by the Diamond Trading Company is a major contributor to the large diamond price increases experienced in recent years. Not since the early 1980s has the industry experienced such rapid price hikes. However, the change in distribution channels has effectively created a more efficient system for selling diamonds at all levels, thereby reducing profit margins. So, the full rough price increases have not been carried through from rough to mid-level distribution, to the retailer, and to the consumer.

Luminescence of the Hope Diamond and Other Blue Diamonds

Sally Eaton-Magaña (sally.magana@gia.edu)1, Jeffrey E. Post2, Jaime A. Freitas Jr.1, Paul B. Klein1, Roy A. Walters3, Peter J. Heaney4, and James E. Butler5

1Naval Research Laboratory, Washington, DC; 2Department of Mineral Sciences, Smithsonian Institution, Washington, DC; 3Ocean Optics Inc., Dunedin, Florida; 4Department of Geosciences, Pennsylvania State University, University Park

A striking feature of the Hope Diamond is its long-lasting orange-red phosphorescence (see, e.g., figure 5 in Crowningshield, 1989). Other than visual and photographic observation, this luminescence has not been studied. Our experiments employed a technique not often used in gemology, phosphorescence spectroscopy, which was performed on 60 natural blue diamonds from the Aurora Butterfly and Aurora Heart collections, in addition to the Hope Diamond and the Blue Heart diamond. The data were collected using an Ocean Optics deuterium lamp, a fiber-optic assembly to transmit the light, and a USB 2000 spectrometer to record the phosphorescence spectra. Because of the risk of damaging these unique gems, we could not perform several scientifically desirable experiments (such as spectroscopy at liquid nitrogen temperatures). Most luminescence measurements were taken at room temperature, so the majority of the spectra showed broad peaks and no sharp lines.

Nearly all spectra of the blue diamonds examined showed a combination of greenish blue (500 nm) and red (660 nm) phosphorescence. The intensities and the half-lives of each luminescence peak differed for each diamond, which would account for the variety of phosphorescence colors (blue to red) reported by previous researchers. The peak shapes were not significantly different between diamonds, and the peak maxima did not shift with time after the first second.

Blue diamonds are typically type Iib and contain boron impurities. For comparison, we tested four blue HPHT-grown, type Iib synthetic diamonds. These stones exhibited a phosphorescence peak at 500 nm (and also at 575 nm in one diamond), but not at 660 nm.

Prior research has demonstrated that donor-acceptor pair recombination is a likely cause of several bands observed by laser-induced photoluminescence and phosphorescence in synthetic diamonds (see, e.g., Watanabe et al., 1997). In this scenario, holes that are trapped on acceptors (such as boron) and electrons trapped on donors recombine and emit light equivalent to the difference in energy that they possess while separated. This is the first study of natural type Iib diamonds that demonstrates a similar mechanism operating in natural stones.
Acknowledgements: The authors are grateful to Alan Bronstein for his time and for providing access to the Aurora collections, to Thomas Moses and Wuiyi Wang of the GIA Laboratory in New York who loaned a DiamondView microscope for this project, and to Russell Feather, Gem Collection manager at the Smithsonian Institution, for his assistance.

REFERENCES

Elbaite from the Himalaya Mine, Mesa Grande, California
Andreas Ertl (andreas.ertl@tuwien.ac.at)1, George R. Rossman2, John M. Hughes3, Ying Wang2, Julie O’Leary2, M. Darby Dyar4, Stefan Prowatke5, and Thomas Ludwig5
1University of Vienna, Austria; 2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena; 3Miami University, Oxford, Ohio; 4Mount Holyoke College, South Hadley, Massachusetts; 5University of Heidelberg, Germany

Detailed chemical, Mössbauer, infrared, and structural data were obtained on 12 crystals from gem pockets in the Himalaya mine, San Diego County, California, which is a source for pink and multicolored gem tourmaline. Some of these tourmalines varied strongly in composition. One crystal (sample I, see figure and table) had increasing Ca content (liddicoatite component) and decreasing Zn content (up to -1 wt.% ZnO) from the Fe-rich core to the Al- and Li-rich rim. The black core (zone 1) was an Al-rich, Mn-bearing schorl. The outer core (zone 2) was a dark yellowish green, Fe- and Mn-bearing elbaite with ~4 wt.% MnO. A yellowish green, intermediate Mn-rich elbaite zone (zone 3) contained a relatively high Mn content of ~6 wt.% MnO. Next there was a light pink elbaite zone (zone 4) with essentially no Fe and only small amounts of Mn (1 ppm MnO). Mössbauer studies of 20 mg samples from the color zones within this crystal showed that the relative fraction of Fe\(^{3+}\) increased continuously from the Fe-rich core to the Fe-poor rim, reflecting the increasing fugacity of oxygen in the pegmatite pocket. Within the core of the crystal, the Si site contained ~0.3 apfu (atoms per formula unit) Al whereas in the rim it contained ~0.2 apfu B, consistent with the average Si-O distances. The intermediate zones contained mixed occupancies of Si, Al, and B.

A near-colorless, late-stage elbaite (sample II) from the Green Cap pocket (extracted in 1998) had ~2 wt.% MnO, ~2 wt.% FeO, and surprisingly ~0.3 wt.% MgO (dravite/uvite component), which is unusual in late-stage elbaite. This sample contained 1.6 wt.% CaO, the highest Ca content of the tourmalines in this study.

A gem-quality, light pink elbaite crystal (sample III) had the highest boron concentration (~0.3 apfu B) at the Si site (which produced a lower Si-O distance) of the three samples; it also contained the highest Al\(_2\)O\(_3\) content (~43 wt.%) and essentially no Fe and only small amounts of Mn.

Analysis of water in elbaites is problematic because the crystals often contain fluid inclusions. Thus, conventional methods that extract water from a bulk sample may give erroneous values. Methods such as IR spectroscopy, which allow the distinction between structural OH and fluid inclusions, offer advantages for future tourmaline analyses.

A Close Look at Gemstone Color Grading: Definition of the Key Color
Yulia Grozman (yulia@appraisalplus.biz)
Appraisal Plus, Valley Village, California

Color is the most important factor for determining gemstone quality in colored stones; it is also the most difficult to measure objectively. In colored stones, every facet has a different color (i.e., different hue, saturation, and tone). Despite serious efforts conducted by GIA, there is still some ambiguity in color determination methods. In its Colored Stone Grading Manual, GIA formulated the following procedure to assign the color. The tone is an average of all the areas of the stone,

Colors and chemical compositions of three tourmalines from the Himalaya mine.\(^1\)

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Zone no.</th>
<th>Color</th>
<th>Y site</th>
<th>W site</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>Black</td>
<td>Fe(^{2+})(^{2+})({1.1})Al({3.0})Mn(^{2+})(^{2+})({1.0})Fe(^{3+})(^{3+})({0.5})Li({0.5})Zn({0.1})</td>
<td>(OH)({0.6})F({0.4})O(_{0.2})</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>Black</td>
<td>Al({1.1})Mn({0.8})Li({0.2})Fe(^{3+})(^{3+})({0.5})Fe(^{2+})(^{2+})({0.5})Zn({0.1})</td>
<td>F({0.1})(OH)({0.3})</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>Yellowish green</td>
<td>Al({1.1})Mn({0.8})Li(_{0.2})</td>
<td>F({0.1})(OH)({0.3})</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>Light pink</td>
<td>Al({1.1})Li({0.1})</td>
<td>F({0.1})(OH)({0.3})</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>Near colorless</td>
<td>Al({1.1})Li({0.1})Mn(_{0.8})</td>
<td>F({0.1})(OH)({0.3})</td>
</tr>
<tr>
<td>II</td>
<td>–</td>
<td>Near colorless</td>
<td>Al({1.1})Li({0.1})Mn({0.8})Fe(^{3+})(^{3+})Mg({0.2})</td>
<td>F({0.1})(OH)({0.3})</td>
</tr>
<tr>
<td>III</td>
<td>–</td>
<td>Light pink</td>
<td>Al({1.1})Li({0.1})Mn(_{0.8})</td>
<td>F({0.1})(OH)({0.3})</td>
</tr>
</tbody>
</table>

\(^1\)The Z site was occupied by Al\(_{2+}\) and the V site was occupied by (OH)\(_{3}\) in all the tourmaline samples. The X site was mainly occupied by Na. The T site was mainly occupied by Si with minor Al/B contents. Abbreviation: [] = vacancy.
while the hue and saturation are based on the “key color.” The GIA manual describes key color as “the most representative color that flows through the stone as you rock it.” However, the “most representative color” is very different for dark and light stones. In light stones, areas with the highest saturation will be most visible and thus define the key color. In dark stones (e.g., almandine or sapphire), the flashes (or scintillation) produce the strongest perception of color. The present study attempts to advance GIA standards by introducing a new approach for determining the key color and instrumental measurements. The results of the study are color maps with proposed grade borders for gems such as ruby, sapphire, emerald, and others.

More than 300 gemstones were measured using a GemEx imaging spectrophotometer. This measuring system uses an array of photo detectors, instead of the single photo detector typical of other brands, and measures the color of a specific area of a stone. The results are displayed in the Munsell color-order system with the tolerance of ±0.5 units of hue, ±0.5 units of chroma (saturation), and ±0.25 units of value (tone). The resulting maps utilized the existing GIA Colored Stone Grading System that was expanded to 50 hue units (instead of 33), and they used Munsell units for tone and saturation.

The key color was specified manually and quantified using the result of the measurements. These measurements provide the quantitative base for further statistical analysis of the obtained images to develop a formal algorithm for instrumental key color determination. The development of this algorithm will open a way to design an efficient and comprehensive color measurement device for the gem and jewelry industry.

Natural “CO2-rich” Colored Diamonds

Thomas Hainschwang (thomas.hainschwang@gia.edu)1, Franck Notari2, Emmanuel Fritsch2, Laurent Massi2, Christopher M. Breeding3, and Benjamin Rondeau4

1GIA GemTechLab, Geneva, Switzerland; 2Institut des Matériaux Jean Rouxel, Nantes, France; 3GIA Laboratory, Carlsbad; 4Muséum d’Histoire Naturelle, Paris, France

This study of apparently monocry stalline, so-called CO2-rich diamonds was performed on several hundred samples that were light to dark brown (appearing black) with various modifying colors, including “olive” (mixtures of green, brown, gray, and yellow), yellow, and almost red. The color was usually heterogeneously distributed in the form of patches or non-deformation-related color banding. Characteristic plate-like inclusions were present in nearly all samples. These appeared small, extremely thin, transparent to opaque, and rounded or hexagonal. In general, they were concentrated within certain colored sectors of the diamonds that often exhibited distinct birefringence. The FTIR spectra were characteristic for all samples, with two bands at various positions from 2406 to 2362 cm\(^{-1}\) and 658 to 645 cm\(^{-1}\). These bands have been previously interpreted as the \(\nu_1\) and \(\nu_2\) bands of CO\(_2\) due to inclusions of pressurized solid carbon dioxide (CO\(_2\)) in its cubic form (Schrauder and Navon, 1993; Wang et al., 2005). Practically all samples fluoresced a distinct yellow to greenish yellow to long- and short-wave UV radiation, and they showed lasting yellow phosphorescence.

The one-phonon IR absorptions varied dramatically from standard type Ia peaks to very complex bands, which in many cases were inclusion-related. In some diamonds, unknown absorptions dominating the one-, two- and three-phonon regions were observed, and no satisfactory explanation for their presence could be given. In many samples, the bands observed in the FTIR spectra corresponded to inclusions of carbonates and silicates, notably calcite, mica, and hydrous minerals. Some of the diamonds showed a more-or-less distinct type Ib character.

Our calculations of the theoretical \(\nu_1\) and \(\nu_2\) band positions at various pressures have caused us to strongly doubt the previous interpretation of the IR bands at 2406–2362 cm\(^{-1}\) and 658–645 cm\(^{-1}\). In most cases, the observed absorption positions and shifts (up to 50 cm\(^{-1}\)) did not correspond to the calculated values and appeared to be random. Furthermore, the \(\nu_1\) and \(\nu_2\) bands exhibited highly variable widths (FWHM) and intensity ratios. HPHT-treatment experiments on “CO2-rich” diamonds also brought unexpected results. A possible reason for this is that the CO\(_2\) molecules are integrated into the structure of the diamonds and that the CO\(_2\) is not present as inclusions.

There are some indications that the hexagonal polymorph of diamond (lonsdaleite) could be present in these diamonds. Further analysis may confirm the identity of the hexagonal platelets as lonsdaleite inclusions, as was previously suggested by Kliya and Milyuvene (1984).

Genetic Classification of Mineral Inclusions in Quartz

Jaroslav Hrysl (hrysl@kurtz.cz)
Prague, Czech Republic

Quartz is a mineral with the highest-known number of different mineral inclusions; over 150 minerals have already been identified in quartz, according to Hrysl and Niedermayr (2003). This book contains a detailed description of inclusions in quartz (including how they were identified), which are listed according to the mineralogical system (elements, sulfides, etc.). For this report, only the most important occurrences are listed according to their genetic type. This approach is important to geomorphologists working with specimens of an unknown provenance, because it can help with finding a correct locality.

The following genetic types of geologic environments produce the majority of quartz with inclusions:

- **Alpine fissures**
 - **Typical localities:** the Alps in Austria and Switzerland, Polar
Typical inclusions:
- mica (white muscovite, brown biotite), chlorite (green chlorochlorite), epidote, actinolite, hematite, ilmenite, rutile, anatase, brookite, titanite, carbonates (calcite, siderite), pyrite, black tourmaline (schorl), cavities after anhydrite, galena, chalcopyrite, fibrous sulfoalts (boulangerite, cosalite, meneghinite, etc.), and monazite

Typical localities:
- Minas Gerais in Brazil, Madagascar, and Tongbei in China

Typical inclusions:
- black or colored tourmaline (elbaite), mica (muscovite and lepidolite), garnet (spessartine and almandine), albite, apatite, columbite, beryl, and microlite

Alkaline pegmatites
- Mount Malosa in Malawi, Row Mountain in Russia, and Zegi Mountain in Pakistan

Tungsten deposits
- Panasqueira in Portugal, Kara-Oba in Kazakhstan, Yanggangxian in China, Pasto Bueno in Peru, and Kami in Bolivia

Typical localizations:
- aegirine, astrophyllite, epididymite, zircon, and riebeckite

Ore veins
- Berezovsk in Russia, Messina in South Africa, and Casapalca in Peru

Typical localizations:
- arsenopyrite, chalcopyrite, pyrrhotite, sphalerite, stannite, helvite, cosalite, carbonates (siderite and rhodochrosite), fluorite, and wolframite

Monomineralic quartz veins with amethyst
- Mangyshlak in Kazakhstan, Madagascar, and Brazil

Typical localizations:
- goethite (“cacaoenite”) and hematite (“lepidodrocite” or “beetle legs”)

Amethyst geodes in basalts
- Rio Grande do Sul in Brazil and northern Uruguay

Typical localizations:
- goethite, fluorite, and cristobalite

Dolomitic carbonates
- Herkimer in New York, Bahia in Brazil, Sichuan in China, and Baluchistan in Pakistan

Typical localizations:
- calcite, pyrite, graphite, hydrocarbons (“anthraxolite”), and natural petroleum oil

REFERENCE

The Hkamti Jadeite Mines Area, Sagaing Division, Myanmar (Burma)

Robert E. Kang (finegemsintl@msn.com) and George E. Harlow

The Hkamti jadeite area, Sagaing Division, northwestern Myanmar, is perhaps the world’s most important producer of Imperial jadeite jade. In February 2000, the first group of Westerners visited the jade mines around the mining town of Nansibon (25°51′4″N, 95°51′5″E), 24 km southeast of Sinkaling/Hkamti and ~50 air-km northwest of Hpakan, which is the trading center in Myanmar’s Jade Tract (see e.g., Hughes et al., 2000).

The Hkamti region has two mining centers—Nansibon and Natmaw—separated by 32 air-km. At Nansibon, pebbles and boulders of jadeite are hosted in a serpentine boulder conglomerate, which is steeply inclined at 60°–90°E (Avé Lallemant et al., 2000). The jadeite is concentrated in high-energy, alluvial–fanglomerate channel deposits after being weathered from veins or blocks within serpentine. The discovery of ancient Chinese mining tools indicates that the Nansibon jadeite area has been mined for centuries. At Natmaw, jadeite has been mined from a primary “dike” as well as recovered as alluvial boulders from the Natmaw River. Based on petrologic and textural interpretations, including cathodoluminescence imaging, Nansibon and other jadeite formed as vein crystallizations from a hydrous fluid in ultramafic rock (see Harlow and Sorensen, 2005; Sorensen et al., 2006). Nansibon and Natmaw jadeite is nearly pure jadeitic pyroxene, consisting primarily of jadeite with minor albite; traces of zircon, graphite, and oxidized pyrite(?); abundant fluid inclusions; and rare sodic amphibole selvages. This mineralogy is roughly comparable to jadeite from the Jade Tract. Glassy albite is found with the jadeite and, cobbles in the serpentine conglomerate include garnet amphibolite, epidote-blueschist, granitic rocks, garnet- or chloritoid-pelitic schists, quartz, and marble. The Hkamti jadeite region appears to be a partially buried, westward branch of the Sagaing fault system that defines the main Jade Tract, suggesting considerable potential for future exploitation.

All mineral mining in the country falls under the control of the Myanmar Gem Enterprise (MGE), a subsidiary of the Ministry of Mines, Myanmar. All the jadeite mining concerns in Nansibon are cooperative joint-ventures between the government and private Myanmar companies or individuals. At the time of the authors’ visit to the area in 2000, roughly 175 one-acre claims were active. Excavation was mostly carried out by modern open-cut operations; however, jadeite was detected simply by manual inspection of disaggregated conglomerate. During this visit, jadeite samples were collected in a wide range of colors (see figure).

REFERENCES
This selection of cabochons (0.77–15.58 ct) acquired at Nansibon shows the range of colors in jadeite jade from the area mines. Courtesy of the American Museum of Natural History; photo by D. Finnin.

With changes in excitation wavelength, we noted variations in the position, shape, and relative intensities of the two most intense bands (see figure). The exact position of the C=C stretching band of polyenic molecules depends strongly on the chain length (i.e., number of C=C bonds). Decomposition with constraints of the broad peak around 1500 cm⁻¹ revealed up to nine pigments in the same sample, with a general chemical formula R(−CH=CH)n−R′ (R and R′ are the end-group pigments, which cannot be detected using Raman scattering) with n = 6–14. All of our samples were colored by a mixture of at least four pigments (n = 8–11), and the different colors were attributable to various pigment mixtures. Raman scattering results paralleled qualitatively those obtained by UV-Vis-NIR diffuse reflectance.

Our preliminary studies on cultured freshwater pearls from the same genus (Hyriopsis) but other species (H. schlegeli [Biwa pearls] and H. schlegeli x H. cumingi [Kashima pearls]) have shown that these pigments seem to be characteristic of all cultured pearls originating from this mollusk’s genus. Moreover, other organic gem materials such as shell, corals, nonnacreous...
“pearls,” etc., appear to have a similar origin of color. Finally, our measurements on some freshwater cultured pearls that were color-treated in different ways prove that the origin of color in the treated freshwater cultured pearls is different, and therefore they can be identified with Raman analysis.

Quantifiable Cut Grade System within an Educational Setting
Courtenay Keenan (ckeenan@auroracollege.nt.ca), Mike Botha, and Robert Ward
Aurora College, Yellowknife, Northwest Territories, Canada

The diamond cutting and polishing industry in Canada’s North is unique in that detailed and robust occupational standards were formulated by the Government of the Northwest Territories. Developed with these standards was an innovative Occupational Certification process for workers employed in this industry. This unique situation required the development of a truly quantifiable cut grading system whereby objective, precise feedback relating to the quality of the workmanship is given.

The evaluation for cut quality and finish was first developed to best assess the quality of workmanship of the certification candidates. A demerit system is used whereby each diamond is allotted 100% and demerits are incurred at a rate of 2% per fault in the areas of finish and symmetry. The system describes a fault as any of the following features apparent with 10× magnification:

- Aberrations present on the surface of the diamond as a result of the polishing process (including polish lines, abrasions, and burn marks)
- Faceting errors such as merged facets, open facets, and extra facets

With the advent of computerized proportion scopes (e.g., Sarin Technologies), the cut grade system assumes that the stones under assessment have proportions acceptable to the market.

If properly used by trained graders, this system is scientific, objective, and repeatable. Standardized worksheets (complete with diagnostic diagrams) have been developed to assist the grader and provide an objective paper reference. This system differs from past cut grade systems by offering precise, numerical feedback. Although this system has been applied most often to round brilliants, it is applicable to all diamond cuts.

The Quantifiable Cut Grade System is used by the Aurora College Diamond Cutting and Polishing Program to provide students with objective, numerical, and visual feedback on the quality of their work. Students and staff can reference the worksheets to track skill development and identify potential problem areas. The program exit criteria use this cut grade system by requiring students to achieve at least 70% (≤15 faults) for each diamond polished to be considered suitable for entry into the industry.

Students who successfully complete the training program and enter the diamond polishing industry in the Northwest Territories may apply for Occupational Certification based on these standards after just two years, inclusive of training time. These certification candidates must complete their practical examinations with no stone falling below an 80% grade.

Monochromatic X-Ray Topographic Characterization of Pezzottaite with Synchrotron Radiation
Shane Li Liu (gemewardliu@yahoo.com.hk), Ming-sheng Peng, and Yu-fei Meng
Institute of Gems and Minerals Material, Sun Yat-sen University, Guangzhou, China

Synchrotron radiation X-ray topography is a nondestructive characterization technique for imaging the defect microstructure of crystalline materials. In this research, monochromatic X-ray surface-reflection topographic images were obtained of gem-quality pezzottaite from Madagascar using synchrotron radiation.

Compared to polychromatic (“white”) X-ray topography, the monochromatic technique provides an image of a certain lattice plane instead of a “superimposed” image of a series of atomic planes of the same orientation. It provides a higher resolution image with specific information about the orientation and features of dislocations and strain patterns in the sample. Since surface reflection topography is extremely sensitive to surface microstructure, sample preparation (i.e., polishing) is essential.

X-ray topographic reflection images for (0006), (00012), and (00018) lattice planes at different angular positions along the rocking curve (a curve of the diffraction intensity versus the angular distance from a reference plane) were collected for seven pezzottaite samples. The full width at half maximum (FWHM) and the shape of the diffraction rocking curves reflect the degree of deformation of the sample. The pezzottaite samples exhibited various degrees of crystal perfection. Some crystals showed a mosaic structure containing orientation contrast (a type of X-ray topographic contrast that arises from portions of a sample that are crystallographically misoriented and show variations in diffracted intensity), but with a relatively sharp single-peaked rocking curve, which indicates fairly good crystallinity. However, other samples showed low degrees of crystal perfection, having a fairly wide rocking curve (angles ranging from 300–500 seconds FWHM) with several sharp peaks (see figure).

X-ray topographic images from the imperfect crystals showed large amounts of strain and dislocations with a mosaic structure. Microscopic tubes were observed in the topographs of all seven samples. They were predominantly seen at the boundaries between different domains and along dislocations. We believe that the dislocations are caused by stress and the heterogeneous chemical composition of the material—as revealed by backscattered electron imaging and chemical analysis by electron microprobe and high-resolution inductively coupled plasma–mass spectrometry for Be and Li. Local variations in the crystal structure may cause internal strain resulting in lattice dislocation. This would explain the formation of the “tabby”
extinction effect and anomalous biaxial character seen in some pezzottaite samples between crossed polarizers.

Universal Color Grading System
Yan Liu (yanliu@liulabs.com)
Liu Research Laboratories, South El Monte, California

A Universal Color Grading System has been developed for accurate color grading of colored stones and colored diamonds. This system is based on the uniform CIELAB color space with 22 hue names, seven lightness levels, and four saturation intensities. The color name grid is optimally designed to use the least number of color samples to represent the maximum number of color names for each hue (i.e., 12 samples to represent 20 color names; see figure). The 22 hues are arranged on a hue circle in CIELAB color space according to a previous study (Sturges and Whitfield, 1995). The hues are divided into cool and warm hues, and their saturation intensities and lightness levels are uniformly distributed according to the Color Name Charts of Kelly and Judd (1976). The significant advantage of this system is that gemstone color can be accurately graded at the fineness of level 6 in the Universal Color Language, and not just approximately estimated as is done by other color grading systems and methods.

Color grades provided by the Universal Color Grading System consist of a color name (arranged in order of saturation, lightness, and hue) and the corresponding CIELAB color coordinates in the form of \((C^*, L^*, h^*)\), which represent chroma, lightness, and hue angle. A sample color grade for ruby is Vivid Medium Red (80.0, 50.0, 26.8). The color name is a verbal description of the color, and the color coordinate is used for accurate color communication.

A computer color imaging system called TrueGemColor has also been developed for color grading of colored stones and colored diamonds using this Universal Color Grading System. The TrueGemColor system is precisely profiled in the CIELAB color space, and more importantly it can be calibrated by users for their individual computer monitors. The TrueGemColor system provides a reference color to match the face-up average color of a gemstone under a standard lighting environment. The reference color can be continuously changed by adjusting the hue, lightness, and saturation values on the screen. The color name and CIELAB coordinates of the matched reference color are automatically assigned as the color grade for the gemstone. Gem laboratories and jewelers will always see the same color if they enter the same color coordinates of the color grade using the TrueGemColor system.

REFERENCES

Chameleon Diamonds: A Proposed Model to Explain Thermochromic and Photochromic Behaviors
Laurent Massi (laurent.massi@cnrs-imn.fr), Emmanuel Fritsch, George R. Rossman, Thomas Hainschwang, Stéphane Jobic, and Rémy Dessapt

1 Institut des Matériaux Jean Rouxel, University of Nantes, France; 2 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena; 3 GIA GemTechLab, Geneva, Switzerland

Chameleon diamonds are an unusual variety of colored diamond that typically change from grayish green to yellow when heated (thermochromic behavior) or kept in the dark (photochromic behavior). This report is based on a study of more than 40 chameleon diamonds, including the 22.28 ct Green...
Chameleon and a 31.31 ct oval gem, the largest documented chameleon diamonds known to date.

As described previously for chameleon diamonds, the samples were type IaA, indicating that A aggregates largely dominated the nitrogen speciation. They contained moderate-to-large amounts of hydrogen, in addition to some isolated nitrogen and traces of nickel. Their UV-Vis absorption spectra comprised the continuum typical of type Ib material—even if this character is not detectable with IR spectroscopy—and, in addition, a 480 nm band and a broad band centered at around 800 nm. It is mainly in the red part of the visible spectrum that the color change occurs because when heated or kept in the dark, the essential change in the UV-Vis absorption spectrum is the significant decrease of the very broad band at 800 nm (see figure).

We propose an electronic model that is consistent with all observed color behaviors in chameleon diamonds. The model is based on the premise that, from a physical standpoint, yellow is the stable color whereas green is the metastable one. According to the literature (i.e., Goss et al., 2002), the most plausible model for the hydrogen-related center in diamond is N…H-C (in which the hydrogen atom is located near a bond center between N and C, but closer to C than to N). Since chameleon diamonds are predominantly type IaA, with moderate-to-large amounts of hydrogen, it therefore seems reasonable to suggest that a possible center responsible for the chameleon effect is a nitrogen-hydrogen complex involving the sequence N…H-C.

Reference

Source Type Classification of Gem Corundum

Shane F. McClure (smclure@gia.edu)

GIA Laboratory, Carlsbad

The visual characteristics that gemologists and gem traders look for when examining a gemstone—such as hue, tone, saturation, and diaphaneity—are the direct result of the geologic environment in which the stone formed. This environment determines the stone’s chemical composition, growth structures, and inclusion suites, all of which affect its overall appearance. These factors are common for all gems, but are particularly significant in corundum.

While many different types of growth environments are possible, for corundum they can be broadly categorized into two main groups: metamorphic and magma-related; the latter will be referred to simply as magmatic in this abstract. The largest distinction between these environments is that the metamorphic corundum formed in the earth’s upper crust, whereas the magmatic corundum crystallized much deeper in the earth at midcrust or lower-crust/mantle levels. Eruptive forces are necessary to transport corundum from the latter group to the earth’s surface (typically in an alkali basaltic magma), so it is referred to as magmatic. While these two broad categories of sources for corundum may be readily distinguished by a combination of standard
gemological and advanced analytical techniques, they can also commonly be recognized visually by a knowledgeable observer.

Beyond these two broad source designations, there exists a potential to further classify rubies and sapphires of all colors based on their dominant inclusion features and other physical characteristics. These inclusion features may influence the face-up appearance of a ruby or sapphire. For example, “milky” zonal clouds of submicroscopic particles are responsible for the “soft” appearance or “velvety texture” of blue Kashmir sapphires. Other possible features are concentrations of rutile needles, platelets, and particles that are commonly referred to as “silk,” which are typical of rubies and sapphires from Mogok, Myanmar (Burma). Such features, although commonly associated with a specific geographic source (e.g., Kashmir or Myanmar), more accurately distinguish a particular “type” of ruby or sapphire. Each corundum type shares other properties—including absorption spectra, chemical trends, and growth structures—which may be encountered in stones from more than one deposit or country.

What is proposed here is a classification for rubies and sapphires using a system that is objective, repeatable, teachable, and relevant. It does not attempt to pinpoint geographic locality or a specific deposit, but it does provide information that directly relates to a stone’s appearance and position in the marketplace. The intent is to supply information to the trade that will be useful and consistent in representing their stones, which in turn should benefit the consumer as well.

Color Communication:
The Analysis of Color in Gem Materials

Menahem Sevdermish (smenahem@gemewizard.com)

Advanced Quality A.C.C. Ltd., Ramat Gan, Israel

These UV-Vis absorption spectra of a 0.34 ct chameleon diamond at various temperatures show the removal of the very broad band at about 800 nm when the diamond is heated to 425 K, resulting in a change in color from grayish green to yellow.
The tremendous growth of Internet-oriented activities, together with the progress made in digital imagery and high-definition computer screens, has prompted this author to explore possibilities in the digital assessment of the color of gems.

This presentation describes the creation of digital images of gemstones in color space, and the subsequent analysis of these images. A sampling, measuring, and recording system was developed to locate the precise position of these images in color space (see figure). This resulted in the incorporation in a database of over 15,000 colors, and over 150,000 images that are combinations of colors and various cutting shapes. Measurements of the color in each image were taken in 400–10,000 spots, each using a specially designed formula. The make-up of these spots can be thought of as the “DNA” of the color, and it is unique to each image.

The accumulated database of these predefined digital images can be used as a visual comparative tool to evaluate the color of actual gemstones. In addition, such a digital analysis and measuring system can be used to perform important tasks in gemological laboratories, research centers, and educational facilities where it is important to quantify gem colors. We are also exploring the possible adaptation of the system to the fashion industry by scanning the designed material and matching a gem color to it. At present, we are using the system to assess the correlation between the colors of colored stones and fancy-color diamonds. We are exploring the creation of an Internet-oriented trading platform based on the digital data of the system, and the possible application of the system as a testing tool for color blindness.

An automatic digital analysis of the color of a gem, which combines the system with a simple digital imaging tool that provides a constant illumination and viewing environment while capturing the gem image, is presently being beta tested. Three fundamental methods that can be used to calibrate a computer monitor—visual calibration, ICC profile-based calibration, and mechanical calibration—are also being evaluated as an important component of this system.

Sapphires from Ban Huai Sai, Laos
Suttharongsamnong (ssutpas@dm.gov.ae)1, Abdalla Abdelqadir Yousif2, and Theerapongs Thanasuthipitak2

1Dubai Gemstone Laboratory, Dubai, United Arab Emirates; 2Department of Geological Sciences, Chiang Mai University, Chiang Mai, Thailand

Gem corundum from the Ban Huai Sai area, Bokeow Province, northwest Laos, has been mentioned only occasionally in the literature, and limited gemological and spectroscopic data have been published on samples from this area (Johnson and Koivula, 1996; Sutherland et al., 2002). This study presents a more complete characterization of this material.

To date, relatively small amounts of gem corundum have been produced at this locality by mechanized mining as well as primitive extraction methods. Estimates of total corundum production are unavailable. The material is recovered from alluvial deposits derived from basaltic rock. Most of the corundum is blue sapphire, with the crystals typically weighing less than 1 ct.

A total of 306 unheated and 68 heated, gem-quality corundum samples (blue, milky blue, green, and yellow) were obtained from three mining areas near Ban Huai Sai—Huai Ho, Huai Sala, and Huai Kok. These samples were studied using standard gemological and spectroscopic methods (Raman, UV-Vis-NIR, FTIR, EDXRF, and LA-ICP-MS) to identify the inclusions, characterize the spectra, analyze the chemical composition, and investigate the causes of color.

The physical, chemical, and spectral properties of the corundum samples from Ban Huai Sai were consistent with those of other basaltic corundums. They can easily be distinguished from sapphires of other origins on the basis of their absorption spectra and chemical composition, which are both influenced by the comparatively high Fe contents in the basaltic sapphires. Nevertheless, the sapphires investigated here can be separated from material from all other sources by a combination of: (1) the presence of monazite inclusions, which are the most common type of mineral inclusion after feldspar (see figure); (2) the characteristic absorption spectrum with distinctive Fe$^{3+}$-Ti$^{4+}$ intervalence charge-transfer bands, which are in the range of 520–650 nm and seen in both unheated and heated samples; and (3) significant concentrations of Ti and Fe.

REFERENCES
Fancy-Color Diamonds: Better Color Appearance by Optimizing Cut
Sergey Sivovolenko1 and Yuri Shelementiev2
1OctoNus Software, Moscow, Russia; 2Diamond Design, Moscow, Russia

Considerations for cutting fancy-color diamonds include yield, brightness, saturation, and color distribution. Here we present a system for selecting rough diamonds and determining the optimal shape and proportions during the cutting process.

The color coordinates of a diamond may be calculated based on the absorption coefficient at every wavelength. These coordinates for various thicknesses and hues can be plotted on a saturation vs. brightness diagram (see figure; note that hue can also change with thickness). According to our research, chroma and colorfulness values (Hunt, 2004) may be used to evaluate the potential of a particular rough diamond to achieve a certain color grade when faceted.

Because fancy-color grades depend in part on the path length of light through the cut stone, for every rough diamond with its particular size and spectrum there are restrictions on the possible shapes that can be used to obtain the fancy-color grade.

By using OctoNus ray-tracing software and a computer model of the scanned rough diamond, one can estimate the average light path of any cut from any piece of rough. The few best shapes are optimized based on the diameter, length-to-width ratio, and total depth that correspond to the optimal average light path data. During the optimization process, the cut proportions are varied and the light path length is calculated for every set of cut parameters.

Numerical metrics for dark zones, average saturation, and color distribution enable predictions of the cut stone’s color grade. For such calculations, we consider a diamond as a mosaic of small differently colored areas and calculate their color coordinates. A color grade for each proportion set can be determined from a histogram containing information about the total area of each color weighted by its brightness. After the computer calculates color grades for various cut proportions, those with the best color can be determined.

For the best computer-predicted proportions, the color contrast and distribution are checked visually with photorealistic color images of the diamond in different lighting conditions. Using the software, the cutter can compare different faceting plans according to weight, proportions, and color, and will be able to decide which cut diamond has more value. While the proposed technology does not grade the color of a real diamond, both the optimization software and the cutter’s expert
European Freshwater Pearls: Origin, Distribution, and Characteristics
Elizabeth Strack (info@strack-gih.de)
Gemological Institute, Hamburg, Germany

European pearls from the freshwater mussel Margaritifera margaritifera have been known since Roman times. The mussel prefers rivers and streams in cool, mountainous areas. The shell's length can reach 16 cm. The maximum age is 130 years, and the reproduction cycle is highly specialized, as the glochidia require a host fish (either trout or salmon) in their first year.

The distribution area stretches from northwestern Spain through France, Belgium, and Luxemburg to central Europe, with a connected area of Germany (Bavaria and Saxony), the Czech Republic, and Austria (Mühlviertel), apart from the northern German Lüneburg Heath (see figure). Western Europe has occurrences in Ireland, England, and mostly in Scotland. The mussel is also found in northern Europe, in Scandinavia and Russia. The European pearl mussel is listed in the International Union for Conservation of Nature and Natural Resources' Invertebrate Red Data Book as "vulnerable," as populations have decreased by 80–90% during the last 100 years. (Fishing for them is now forbidden in all countries.) European freshwater pearls are therefore studied largely for historical interest. For example, the Grüne Gewölbe Museum in Dresden has a necklace with 177 Saxonian pearls.

Fourteen pearls (2.5–8 mm) were examined in detail for this study: two came from Scotland, three from Russia, and nine from Lüneburg Heath. The pearls were provided by a Scottish jeweler, a Russian biology station on the Kola Peninsula, and a family in Lüneburg Heath. The colors included whitish gray, violetish pink, and brown, and their luster was medium to low. They consisted of barrel and egg shapes, baroques, drops, and one "triplet." Their fluorescence to long- and short-wave UV radiation was inert to weak blue and red. Surface structures seen with the optical microscope (20×–40×) consisted of wavy lines and a nail-type pattern; on some pearls no structure was visible. Computer tomograms revealed concentric growth structures and distinct cores of organic matter. X-radiographs showed no structures or irregular, linear deposits of organic material. Both methods can be used to prove that an inserted nucleus is not present. These European pearls showed a certain resemblance to Chinese and Japanese freshwater cultured pearls, mostly to those of pre-1990 production. A distinctive difference is that none of the 14 pearls examined showed fluorescence to X-rays, which is a characteristic feature of the Asian freshwater cultured pearls.

Developing Corundum Standards for LA-ICP-MS Trace-Element Analysis
Wen Wang (wwang@gia.edu)1, Matthew Hall1, Andy H. Shen2, and Christopher M. Breeding2
1GIA Laboratory, New York; 2GIA Laboratory, Carlsbad

The trace-element composition of ruby and sapphire is useful for detecting treatments and for assessing geographic origin. LA-ICP-MS is a powerful chemical analysis technique, but it is prone to problems created by matrix effects between standards and the tested samples. The signal intensity from a given element is determined not only by its concentration, but also by concentrations of coexisting elements, as well as by the structure of the sample. The most reliable method of standardization is to use reference materials with the same major-element composition and crystal structure as the sample being analyzed. For the LA-ICP-MS analysis of gem corundum, it is therefore preferable to develop element-in-corundum standards rather than using NIST glasses, which have very different compositions and structures than corundum.

Synthetic corundum crystals were grown using the Czochralski method with various trace-element dopants, including Mg, Ti, Cr, Fe, V, and Ga. Extensive LA-ICP-MS analysis showed that the relative standard deviations (RSDs) of the doped trace-element concentrations were less than 7% (except for Mg, ~11%). This is comparable to the compositional variations in NIST 612 glass that were measured by the same instrument.

It is technically difficult to grow corundum with a relatively high content of Fe (up to several thousand ppm) using the Czochralski method. Therefore, Fe-rich natural corundum was used instead. The distribution of Fe in many such samples was measured, and a few were shown to be very homogeneous, with an RSD of <5%.

To produce a beryllium-in-corundum standard, high-purity synthetic corundum disks (22.0 mm in diameter and 3.6 mm thick) were coated on both flat surfaces with a thin layer of
BeO in a binder and dried. The disks were heated to 1800°C in an oxygen atmosphere for 100 hours, and then ground on both sides to a depth of 0.3 mm and polished. Extensive LA-ICP-MS analysis showed that the RSD of Be concentrations was ~4% horizontally and ~8% vertically (with depth).

Absolute concentrations of the doped trace elements in the various standards were determined using SIMS analyses, which were calibrated using ion-implanted corundum standards (see table).

LA-ICP-MS analysis was performed on the trace element-doped corundum standards and NIST glasses using the same analytical conditions to evaluate the matrix effects. The NIST glasses were much more easily ablated by the laser, and they also generated significantly higher counts/ppm than the synthetic corundum. As a result, the LA-ICP-MS–measured concentrations of trace elements in corundum would be much lower than the true values when NIST glass standards are used for calibration.

Acknowledgments: The authors are grateful to Q. Chen, J. L. Emmett, S. W. Novak, and G. R. Rossman for helpful discussions.

Geology of Gem Deposits

Garnet Inclusions in Yogo Sapphires

Andrea Cade (acade@eos.ubc.ca) and Lee A. Groat
Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, Canada

Yogo sapphires from central Montana are famous for their natural blue color. Although these stones have been mined intermittently for more than a century, little is understood about the deposit itself. The sapphires are found in an Eocene ultramafic lamprophyre dike on the eastern flank of the Little Belt Mountains. The dike is a member of the Central Montana Alkalic Province, a suite of alkalic rocks intruded from the Late Cretaceous to the Paleocene. The dike is traceable for more than 5 km and ranges in width from more than 7 m to less than 10 cm, pinching out in some places.

At the surface, the dike material weathers quickly and resembles the “yellow ground” of kimberlite. The sapphires are found as macrocrysts within the dike. Several hypotheses have been presented for the origin of the sapphires, including xenocrysts from the crust, crystallization during contact metamorphism of the base of the crust by the lamprophyric magma, crystallization from the magma, and xenocrysts from the mantle. The corroded exterior of the sapphires indicates that they were not in equilibrium with the magma at the time of emplacement, but this does not exclude the possibility that they crystallized from the melt. The purpose of the present research was to study the origin of the sapphires using the composition of mineral inclusions, particularly garnet, within the crystals.

Fourteen garnet inclusions from seven sapphire crystals were examined. The garnet crystals were subhedral to euhedral and pale reddish orange (see figure). Mg, Fe, Ca, Cr, Ti, and Na contents of garnets can be used to distinguish between different parageneses. An electron microprobe was used to collect this preliminary geochemical data. The garnet inclusions were Cr-poor (0.02 wt.%), low in TiO₂ (0.12 wt.%) and Na₂O (0.02 wt.%), and had values of 10.7, 14.0, and 11.2 wt.% for MgO, FeO, and CaO, on average, respectively. This indicates that the garnet inclusions were formed in the mantle in Group II eclogite (B), according to the classification of Schulze (2003), and that the sapphires are xenocrysts in the melt, also originating from the mantle. Although corundum in mantle eclogite is known, this is the only known economic deposit.

Reference

These reddish orange inclusions in a Yogo sapphire are eclogitic garnets. Photomicrograph by A. Cade.
Alluvial gem deposits are found throughout southern Tanzania. They are distributed in the Ruvuma region, from Songea in the west to Tunduru in the east and on into the area around Ngurumihiga and Kitowelo in the Liwale region. The deposits are associated with the Kalahari Formation, and consist of unconsolidated eolian sandstone (up to 60 m thick) resting on top of a fluviolbasal conglomerate (up to 4.5 m thick). The gems are hosted by the conglomerate, with bigger and better stones generally recovered from the thicker conglomerate layers with the coarser-sized clasts. Many gem varieties are found throughout the region. The most important gems are alexandrite, cat’s-eye alexandrite, blue sapphire, ruby, and color-change garnet, spinel, and corundum. Diamonds are occasionally recovered.

Just east of the town of Tunduru lies the Muhuwei River. There are two types of alluvial deposits along this river. To the north of the bridge on the Tunduru-Masasi road the gems are hosted by Kalahari conglomerates, and to the south of the bridge they are mined from reworked Kalahari sediments in bedrock channels. Gems from the latter area are generally smaller, but there is a greater variety.

In the Liwale region, Kitowelo is the name of a mining village situated along the Nambalapi River; the village is located about 125 km northeast of Tunduru. Here, the Kalahari Formation is also being exploited for alluvial gems. Locally, this formation is called the Mbemburu Sand Series and covers more than 1,300 km². There are three areas near Kitowelo where the conglomerate is extensive (e.g., up to 1.75 m thick with cobbles reaching 30 cm across) and such layers have produced gems of 10 g and larger.

In the Tunduru-Liwale region, 17 different gem minerals have been found along the rivers. Altogether, 46 varieties of those species have been described in the literature. There also appears to be a great deal of potential for more alluvial deposits throughout the region, particularly in areas that lie outside of the modern-day river valleys.

Geologic Origin of Opals Deduced from Geochmstry

Elöise Gaillou1, Aurélien Delaunay1, Emmanuel Frisch1, and Martine Bouhnik-le-Coz2

1Institut des Matériaux Jean Rouxel, Nantes, France; 2Laboratoire de Géochimie, Rennes, France

Seventy-seven opals from 11 countries were characterized and then chemically analyzed by inductively coupled plasma–mass spectrometry (ICP-MS) in order to establish the nature of the impurities, correlate the mode of formation with the physical properties of the opals, and evaluate the use of geochemistry for establishing geographic origin.

The main impurities present were, in order of decreasing concentration, Al, Ca, Fe, K, Na, and Mg (more than 500 ppm). Other noticeable elements in lesser amounts were Ba, Zr, Sr, Rh, U, and Pb. For the first time, a distinction was found between various kinds of opal deposits according to their geochemistry. Compared to those from sedimentary deposits, volcanic opals were characterized by relative anomalies in Eu and Ce in their rare-earth element (REE) patterns. Opals from each volcanic deposit could be distinguished mostly according to their Ca content (or, if necessary, using Mg, Al, K, or Nb). For example, volcanic opals from Ethiopia could be separated by a high Ca content, the presence of Nb, and a positive Ce anomaly in their REE patterns. The opals could also be separated according to their Ba content; sedimentary opals had Ba concentrations higher than 110 ppm, while volcanic opals were generally poor in Ba (see figure). The restricted range of all element concentrations for play-of-color opals around the world indicates that they must have very specific conditions of formation compared to those of common opals.

An initial interpretation of the “crystallochemistry” of this amorphous material looked at the crystallographic site of certain impurities as well as their substitutions. The main replacement is the exchange of Si4+ by Al3+ and Fe3+. This modification involves a charge imbalance neutralized by the presence of additional cations (mainly Ca2+, Mg2+, Mn2+, Ba2+, K+, and Na+). It was also shown for the first time that the chemistry of an opal influences its physical properties. For example, greater concentrations of iron correlated to darker colors (from yellow to “chocolate brown”). This element inhibits luminescence, too, whereas only trace amounts of U (1 ppm, sometimes less) induce a green luminescence.

Host rocks from Mexico and Brazil were analyzed to understand the conditions of opal genesis and the mobilization of elements during the weathering process. The geochemistry of an opal depends mostly on the host rock, although it may be modified by processes of dissolution during the weathering.

Diamond Occurrence and Evolution in the Mantle

Jeff Harris (j.harris@ges.gla.ac.uk)
Department of Geographical and Earth Sciences, University of Glasgow, United Kingdom

The types and chemical compositions of syngenetic minerals included in diamonds indicate that diamond formation within the earth extends over the depth range from 700 km (some 30 km below the upper/lower mantle boundary) to about 150 km. The presence of ferropericlase with Mg- and Ca-perovskite-structured silicates in the same diamond help define the lower-mantle origin. Diamonds from the transition zone (660 to 410 km) are identified by rare occurrences of spinel in orthorhombic olivine inclusions. Diamond formation, not only within the transition zone, but also in the asthenosphere and lithosphere (410 to 200–150 km), is identified by a systematic variation in the composition of a garnet inclusion called majorite. Trace-element patterns within the majorites indicate that the carbon forming these diamonds may have a
crustal component that is best explained by diamond formation in a subducting slab.

The above mineral assemblages are rare relative to those trapped in diamonds that form at the base of cratons at depths of 180–150 km. These include identifications two principal growth environments for diamond: peridotitic (olivine, orthopyroxene, Cr-pyrope garnet, chromite, and rare clino.pyroxene, with Ni-Fe sulfides) and eclogitic (jadeitic clino.pyroxene and pyrope-aldamidine garnet, with rutile, kyanite, and Ni-Fe sulfides). Study of these inclusions provides information on the temperature and pressure of diamond formation (950 to 1250°C, and generally between 5 and 6 GPa—the latter equivalent to 150 to 180 km depth), as well as the genesis ages of the diamonds (between 1 and 3.5 billion years old). The age of the earth is 4.5 billion years.

Studies of the carbon isotopes and the total nitrogen contents in the host diamond can be linked to the geochemical information obtained from the inclusions. For all lower-mantle diamonds, the carbon isotopic ratio (δ13C) is that of the mantle at ~5‰ with nitrogen contents of zero (type II diamonds). For diamonds in the transition zone and asthenosphere, δ13C ratios vary widely (~3.5‰ to ~24‰), but again the diamonds are invariably type II. Peridotitic diamonds formed beneath cratons have a narrow δ13C signature centered around ~5‰ with nitrogen contents averaging 200 ppm. For eclogitic diamonds, there is also a major δ13C peak at ~5‰, but with tails to more depleted values of ~30‰ and enrichments of up to +5‰. Nitrogen contents average 300 ppm.

Diamond genesis may occur either as a direct conversion from graphite, or through chemical reactions involving mantle carbonates or methane. Because of resorption and plastic deformation (the latter causing diamond to become brown), the shape and color of deep diamonds are not good. With shallower diamonds, there is a broader color range and resorption processes are more clearly defined, with octahedral shapes and color of deep diamonds not good. With deformation (the latter causing diamond to become brown),

Geochemical Cycles of Gem-Forming Elements: What It Takes to Make Tourmaline, Beryl, Topaz, Spodumene, and other Pegmatitic Gems

David London (dlondon@ou.edu)
School of Geology and Geophysics, University of Oklahoma, Norman

Granitic pegmatites are the principal or sole sources of important colored gems that include varieties of beryl, tourmaline, spodumene, topaz, spessartine, and a few others. In addition to the common constituents of Si, Al, and O, each of these minerals contains an essential structural component (ESC) that is comparatively rare: Li in spodumene, Be in beryl, B in tourmaline, F in topaz, and Mn in spessartine. Therefore, the formation of these potential gem minerals is controlled largely by the geologic abundance of the rare ESC that each contains.

The average abundance of Li, Be, B, F, and Mn (see table) may be grouped according to four categories: (1) in the earth’s crust; (2) in rhyolite obsidians that represent the unfractuated igneous precursors to granitic pegmatites; (3) a representative concentration of each ESC in granitic pegmatites that notably contain spodumene, beryl, tourmaline, topaz, or spessartine; and (4) the approximate concentration of each element needed to precipitate its characteristic mineral (i.e., reach saturation) in granitic melts at pressures of ~100–300 MPa and at magmatic temperatures of ~600–650°C.

Most gem-bearing pegmatites evolve from granitic melts, which originate by partial melting of sedimentary and igneous rocks in mountain belts at the margins of continents, and beneath rift zones within the continental interiors. The common rock-forming minerals that participate in melting reactions include quartz, feldspars, micas, amphiboles, clino.pyroxene, cordierite, garnet, spinel, and perhaps olivine. If a rare ESC is compatible in one of these minerals (e.g., as Be in cordierite), then that host mineral may sequester the ESC if that mineral does not participate in the melting reaction, or it may provide a source of the rare ESC if that host mineral is a major contributor to the formation of the granitic melt. For the rare elements Li, Be, F, and Mn, the micas—biotite and muscovite—are the most important minerals for determining the rare-element enrichment in the granitic melt at source. Micas and metamorphic tourmaline also contribute most of the B.

Two important observations emerge from the data in the table. First, the formation of minerals with rare ESCs requires an extraordinary degree of chemical refinement via crystal fractionation. In general, these rare minerals become saturated in pegmatite melts only after >95% of the original granitic melt has solidified. Though this evolutionary relationship from granite to pegmatite has long been assumed, it has not previously been demonstrated, and contradictory models have

Opals from volcanic and sedimentary origins can be separated on the basis of their barium (Ba) concentrations, regardless of whether they are amorphous (opal-A) or poorly crystallized (opal-CT).
persisted in the scientific arena. Second, the pegmatites do not always appear to contain sufficient ESCs to form these gem minerals at magmatic temperatures. There are several possible explanations for this conundrum, including the likely case that the ESCs of some gem minerals only become sufficiently concentrated to produce gem crystals after extended fractional crystallization of the pegmatite magmas themselves. As temperature falls, lower concentrations of rare ESCs are needed to crystallize the gem-forming minerals. Recent modeling suggests that pegmatite dikes—miarolitic gem pegmatites in particular—solidify ~200°C below the temperatures expected of granitic magmas. At these lower temperatures, near ~400–450°C, the “saturation” and “pegmatite” concentrations of the ESCs converge to similar values.

<table>
<thead>
<tr>
<th>Li</th>
<th>Be</th>
<th>B</th>
<th>F</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3</td>
<td>20</td>
<td>625</td>
<td>950</td>
</tr>
</tbody>
</table>

The Miarolitic Stage in Granitic Pegmatites: How Mother Nature Makes Big, Clear Crystals
David London (dlondon@ou.edu)
School of Geology and Geophysics, University of Oklahoma, Norman

Gem material is rare for three reasons: (1) many gem-forming minerals are uncommon in nature, (2) the potential gem crystals need to be large enough for jewelry applications, and (3) the crystals must possess a high degree of transparency. One environment in which a variety of minerals achieve large, clear crystal perfection is clay-filled cavities or “pockets” within granitic pegmatites. These cavities, also termed miaroles, are the final portions of granitic pegmatites to solidify.

Industrial mineralogists can create large, clear single crystals of normally insoluble oxides and silicates by growth in high-temperature fluxed melts. These fluxes, which include H2O, excess alkalis, B, P, and sometimes F, promote the growth of large, clear crystals in two ways. First, the fluxes decrease the viscosity of melts and, as a result, enhance diffusive mass transport of nutrients from the melt to the growing crystal surface. Second and more important, the fluxes interfere with the nucleation of crystals from the melt, such that when a crystal does nucleate, it can grow to a large size. When a flux-rich melt is in contact with silicate crystals, it can dissolve other silicate solids or liquids along the crystal surface, leaving the crystal inclusion-free, and hence transparent.

Nature appears to use the same process in the growth of gem crystals within miarolitic pegmatites. The pegmatite-forming process creates the necessary fluxes by concentrating alkalis, H2O, B, P, and F in the melt along the boundary interfaces of growing crystals. While the crystal growth rate remains high, these fluxed boundary layers of melt can concentrate rare elements and dissolve solid phases. The transition from ordinary pegmatite to that enriched in rare elements and gem-quality crystals denotes a change in the medium of crystallization from the bulk pegmatite melt (which contains some flux but is typical of granitic compositions) to the fluxed boundary liquid itself. The fluxed medium may exist at low temperatures, and once the fluxes are removed by crystallization or lost to surrounding rocks, then the remainder of the silicate material solidifies into fine-grained aluminosilicate clays. Together with the flux-rich crystalline phases like tourmaline (enriched in B), topaz (F), montebrasite (P) and other rare minerals, the primary pocket clays may constitute the last remains of the original gel-like fluxed boundary medium. The excess, soluble components of the fluxes are lost to the surrounding rocks. Localized reactions between the pocket fluids and the pegmatite host rocks may be useful for the indirect discovery of gem-bearing cavities.

Some Open Questions on Diamond Morphology
Benjamin Rouxel (rondeau@mnhn.fr)1 and Emmanuel Fritsch2

The geologic conditions of natural diamond formation can sometimes be inferred from diamond morphology. For
example, the observation of micromorphology helps establish the mode of growth that derives from the driving force (a combination of all parameters that affect crystal growth such as saturation, temperature, and pressure; see Sunagawa, 1981). Nonetheless, the geologic significance of the many diamond morphologies remains unclear. For example, a high hydrogen content is apparently needed for cuboid growth (Rondeau et al., 2004). However, the exact conditions triggering such growth are still a matter of speculation, as cuboid diamond has never been reproduced by synthesis. Fibrous diamond develops under very high driving force (very favorable growth conditions), much higher than layered, octahedral growth (Sunagawa, 1981). Coated diamonds, showing a fibrous overgrowth on an octahedron, are thought to have developed during kimberlite eruption (Boyd et al., 1994) when pressure diminishes dramatically (and hence, driving force increases) by the overgrowth of fibrous rims on pre-existing octahedra. This model is contradictory to the general observation that diamond crystals are very often partially dissolved, as this dissolution is believed to occur in the kimberlite magma as the diamonds are transported to the surface. So, what are the geologic conditions in which fibrous growth may occur?

Moreover, a diamond showing a fibrous core embedded inside a layered, octahedral rim (see figure) may signify that slow octahedral growth can occur after a stage of rapid fibrous growth. Does this signal an abrupt change of growth conditions? And what kind of geologic event could cause such an abrupt transition?

Also, thermodynamic diagrams predict that, generally, the hopper morphology (with hollow, step-like faces and straight edges) develops under intermediate conditions of driving force, between the two above-mentioned growth modes. Nonetheless, hopper morphology has never been observed in natural diamond (even if the term hopper has been misused on occasion for skeletal cuboid or mixed-habit natural diamonds; see Koivula et al., 2004). There is no theoretical reason to believe that hopper growth is not possible in natural diamond, since it is observed in certain synthetic diamonds, but why is it not observed in nature? Does this mean that natural diamond grows under conditions for which fibrous growth immediately follows layered growth by increasing driving force?

To answer these questions requires future cooperation between various fields of science (thermodynamics, crystal growth, spectroscopy, petrology, geochemistry, etc.). Also, experimentation is needed to further support certain hypotheses on the formation of unusual diamonds.

REFERENCES

The Gel Model for the Formation of Gem-bearing Pockets within Granitic Pegmatites, and Implications for Gem Synthesis
Matthew C. Taylor (taylor@sci.muni.cz)
Institute of Geological Sciences, Masaryk University, Brno, Czech Republic

Previous theories describing the crystallization of gem “pockets” (cavities) within granitic pegmatites have focused on three origins: (1) supercritical aqueous solutions (water-rich fluids) exsolved from silicate melts; (2) water-rich melts that contain significant amounts of additional fluxes (e.g., boron, phosphorus, fluorine); and (3) dissolution or “solution” cavities that formed by the hydrothermal alteration of preexisting minerals (London, 2003). Evidence now suggests another possible origin for pegmatites and their associated gem pockets: crystallization from supercritical silicic gels (Taylor, 2005). Aqueous-phase and fluxed-melt techniques of crystal growth have been extensively exploited to create many kinds of facetable synthetics, but some gem varieties still elude researchers. Given the hypothesis described below for pegmatite pocket formation, basic growth
procedures in subcritical gels (Henisch, 1970) might be adapted to supercritical gels that are dispersed after crystal growth and provide a future direction for gem synthesis, particularly for tourmaline.

The crystallization of granitic pegmatites is now thought to occur mostly below 400°C but in what are still considered magmatic conditions (Sirbescu and Nabelek, 2003). The transition from massive pegmatite into pockets typically starts with blocky crystals of K- and/or Na-feldspar, followed by gem minerals such as spodumene, tourmaline, and beryl (aquamarine), and accompanied by bladed albite (“cleavelandite”). Some gem minerals may also appear late, as shown by beryl (morganite) and topaz that grew on cleavelandite. All of these minerals, however, predate ubiquitous massive quartz as well as quartz crystals in pockets. Pegmatic tourmaline may exhibit evidence of periodic precipitation (i.e., Liesegang rings) and oscillatory compositional zoning that are not found in a melt or aqueous liquid/vapor where convection can occur, but these features have been described in gels. These phenomena suggest that gem crystal growth in pegmatites is occurring at supercritical aqueous conditions within a dense silicic gel.

The gel model of pegmatite crystallization can be used to explain the formation of gem-bearing pockets through the release of fluids that accompany cooling and crystallization of silicic gels. When consolidating pegmatites cool through the critical temperature of their pore fluids (e.g., steam condensing to liquid water), depending on pore diameters, gels may order into crystalline solids (i.e., massive quartz) or disperse into colloidal solutions (sols). These sols then precipitate as quartz crystals within pockets, along with zeolites, clays, and/oropal below the critical temperature. The release and ultimate accumulation of fluids from silicic gels give rise to pockets in pegmatites and, at times, an abundance of loose gem crystals within the cavities.

REFERENCES

The Sandawana Model of Emerald Formation

James E. Butler (james.butler@nrl.navy.mil)

Growth of CVD Synthetic Diamond

Gems & Gemology Fall 2006
10 ct, and various colors ranging from colorless (“D”) to blue. CVD synthetic diamond will ultimately be most valuable in advancing technologies such as electrical power production and transmission, advanced optics, medical sensors, electronics, and communications, among others.

The technological exploitation of diamond is driven by the extreme and useful material properties of diamond, and it requires repeatability, control, and uniformity unavailable in natural diamonds. The main use (i.e., gem versus industrial) for CVD single-crystal synthetic diamond will depend on the market value of the ultimate device. Significant scientific and technological barriers exist to the growth of single-crystal CVD synthetic diamond. These include substrate quality, preparation, and availability; the CVD growth process; suppression of crystal twin formation; and gas purity and doping.

Growth, Morphology, and Perfection of Single Crystals: Basic Concepts in Discriminating Natural from Synthetic Gemstones

Ichiro Sunagawa (i.sunagawa@nifty.com)
Tachikawa, Tokyo, Japan

Natural gem crystals form under various growth conditions, and may undergo individual growth and post-growth processes that influence their crystal morphology and degree of perfection and homogeneity. In contrast, synthetic crystals are forced to grow within a limited time, with growth usually initiated on a seed, under different conditions from their natural counterparts. Their growth peculiarities are recorded, even in nearly perfect single crystals, through the various forms of imperfections and heterogeneities. These can be visualized even in eye-clean samples if the appropriate methods are applied.

In distinguishing natural from synthetic gemstones, gemologists need to understand how crystals grow, and how their morphology, perfection, and homogeneities are influenced by their growth conditions. Important considerations include:

- The nature of the growth technique employed and the phases involved (melt, solution, or vapor phases)
- The role of driving force for growth (mass transfer and heat transfer; polyhedral, hopper, and spherulitic morphology)
- The structure of the solid-liquid interface (rough and smooth interface, thermodynamic and kinetic roughening transition)
- The growth mechanism (adhesive type on rough interface, two-dimensional nucleation growth, or spiral growth mechanism on smooth interface)
- The origin of lattice defects (dislocations generated from the seed or substrate surface and forming inclusions, element partitioning related to kinetics)
- The methods in which the morphology of crystals and element partitioning are controlled (growth sectors, growth banding, kinetically controlled element partitioning)

These concepts can be used to demonstrate the importance of the science of crystal growth in gemology, as is evident in a comparison of the similarities and differences among natural, HPHT-grown, and CVD-grown synthetic diamonds.

New Gem Localities

Amethyst Mining in Zambia

Bjorn Anckar (bjorn.anckar@geologem.com)
European Union Mining Sector Diversification Programme, Lusaka, Zambia

One of the world’s largest producers of amethyst is the Republic of Zambia in south-central Africa. Amethyst mining takes place in several parts of the country, but only three localities have any significance in the gem trade. The most important occurrence is the Mapatizya mining area in the Kalomo District of southern Zambia. Amethyst has been mined here since its discovery in the late 1950s. At present there are about 60 registered mining plots but only about 10 can be considered active producers. Currently, there is one large operator and a few moderate-scale operations. There are also a number of small-scale mining operations as well as an abundance of artisanal miners and illegal diggers. About 5,000 people have settled in the immediate area and depend on amethyst mining for their livelihood. The local climate is very arid, and agriculture is at the subsistence level or lower. The poverty of the area is striking.

Amethyst mining by the large- and moderate-scale operators is accomplished in open pits using bulldozers and excavators. Small-scale operators dig pits and tunnels using only picks and shovels. Processing is very labor intensive, and includes washing, sorting, cobbing, sawing, and final sizing/grading of large amounts of mined material.

Production in Zambia over the last decade averaged about 1,000 tonnes of amethyst annually. The vast majority of this production is low grade and mostly exported to China for carving and bead making. A small portion of the total production constitutes facet grade with a vivid purple “Siberian” hue. Faceted amethyst from Zambia ranges from melee to >50 ct. Heat treatment is not performed, as the material turns an unattractive grayish green. Frequent bush fires and intense sunlight in the area have turned all surface-exposed amethyst veins to this color.

Amethyst mines are also located in central Zambia, in Chief Kaindu’s area north-northwest of Mumbwa. The area is most noted for its production of specimens of attractive amethyst druses; some are quite large and weigh several tonnes (see figure). The crystals are generally large, ranging from 2 to 13 cm. One locality, the Lombwa mine, produces material that shows patchy portions of distinct citrine and amethyst, but the two colors tend to blend and the material is difficult to cut into attractive pieces of ametrine.

A vast area with several amethyst mines is located along the border of Zambia and the Democratic Republic of Congo, between Solwezi and Mwinilunga in northwestern Zambia.
The material is often very clear but tends to be pale and is mainly exported to China for carving and bead making. Amethyst from this area responds well to heating, and a large portion of the production is treated to citrine. The Chafukuma mine is considered the producer of the best-quality amethyst in this area.

Emerald Mineralization in Northwestern Ontario, Canada

Allison A. Brand (allisonbrand@hotmail.com)¹, Lee A. Groat¹, Mary I. Garland², and Robert Linnen³

¹Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, Canada; ²London, Ontario, Canada; ³Department of Earth Sciences, University of Waterloo, Ontario, Canada

The Taylor 2 (also known as Ghost Lake) emerald occurrence in northwestern Ontario is associated with a pegmatite of the Mavis Lake Pegmatite Group proximal to the 2,685 million-year-old Ghost Lake Batholith. The Taylor 2 pegmatite consists of three separate limbs that intrude a wide zone of chlorite schist near the eastern end of an altered ultramafic sill. Most of the beryl and emerald occurs in a “zone of mixing” between the southern and central limbs of the pegmatite. The rock in this zone consists of relic orange K-feldspar crystals (<30 cm) in a matrix of anhedral bluish plagioclase, quartz, fine-grained black phlogopite, blue apatite crystals (<1 cm), and black tourmaline crystals (<2 cm). The beryl occurs as euhedral crystals up to 2.3 × 1.8 cm; most are opaque to translucent and white to pale green in color; about 10% are emerald. Stones weighing up to 0.82 ct have been faceted, but most are not truly transparent. Electron-microprobe analyses of the emeralds showed an average Cr₂O₃ concentration of 0.27 wt.% (maximum 0.46 wt.% Cr₂O₃, or 0.04 Cr atoms per formula unit [apfu]), and a maximum V₂O₃ concentration of 0.05 wt.% The FeO and MgO concentrations were relatively low, with maximum values of 0.54 and 0.70 wt.% (0.04 Fe and 0.10 Mg apfu), respectively. The saturation of the green color increased with substitution of Mg, Fe, Cr, and V for Al at the Y-site. The emeralds showed average Na₂O and Cs₂O contents of 0.81 and 0.13 wt.% (0.15 Na and 0.01 Cs apfu), respectively, but a white beryl from the central limb of the pegmatite contained 1.38 wt.% Na₂O and 1.10 wt.% Cs₂O.

Whole-rock compositions were obtained for eight different rock units in the detailed map area. Relative to Be crustal abundance (<5 ppm) and the normal range of granites (2–20 ppm), the compositions showed high concentrations of Be (89 ppm) in the Taylor 2 pegmatite and elevated Cr in the chlorite schist (2610 ppm) and the altered ultramafic sill (3050 ppm). Geochemical similarities support the hypothesis that the chlorite schist is the faulted analogue of the altered ultramafic sill. The absence of beryl in the latter unit may be due to lower amounts of fluid and/or F concentrations (~150 ppm versus ~1300 ppm for the chlorite schist).

The Taylor 2 emeralds most likely formed through metamictism driven by granitic magmatism. However, the presence of a displaced wall zone, boudins in the pegmatite, and ductile deformation of both the pegmatite and wall zone suggest that some degree of shearing was involved. This occurrence is unique among Canadian emerald localities, as emerald occurs proximal to the intrusion, whereas at Lened in the Northwest Territories and Tsa da Glisza in the Yukon Territory, emerald occurs distal to the intrusion within quartz veins. Therefore, this study may provide new insights for emerald exploration.

Sapphires from New Zealand

Lore Kiefer (lkiefer@agta-gtc.org)¹, Michael S. Krzemnicki², Garry Du Toit¹, Riccardo Befi¹, and Karl Schmetzer³

¹AGTA Gemological Testing Center, New York; ²SSEF Swiss Gemmological Institute, Basel, Switzerland; ³Petershausen, Germany

The authors recently examined gem corundum from an alluvial deposit on the South Island of New Zealand. The waterworn pebbles (see figure) were found close to Dunedin, during the reworking of an old gold mining area. Thirty samples were studied, ranging from approximately 3 to 8 mm. The 26 rough samples were transparent to translucent pink (18), transparent to translucent orange to orangy pink (5), and the four polished stones were pink (2 faceted), violetish pink (star sapphire cabochon), and pinkish orange (cabochon). All of the stones were examined with a gemological microscope, and selected samples underwent EDXRF and LIBS chemical analysis.
analysis and UV-Vis and FTIR spectroscopy. In addition, quantitative electron-microprobe analysis was performed on five of the sapphires.

Using a combination of spectroscopic and chemical data, the sapphires could clearly be divided into two types: basaltic and metamorphic. The basaltic sapphires were semitransparent, with rutile inclusions. They showed intense blue coloration and lacked the bluish green appearance that is typical of other basaltic sapphires. UV-Vis spectra were typical of the basaltic type, with a strong Fe$^{3+}$ component and no indication of Cr. Analysis of trace elements showed high Fe, Ti, and Ga concentrations, with no or low V and Cr.

The metamorphic sapphires were purplish pink to pink and orange, with UV-Vis spectra dominated by Cr$^{3+}$. The pinkish orange cabochon had spectroscopic features showing Cr$^{3+}$ and an additional color center, similar to Sri Lankan “padparadscha” sapphires. The metamorphic sapphires had low Fe and Ga values and a higher Cr concentration than the basaltic type. The contents of Ti and V were in the same ranges as in the basaltic sapphires.

In addition to the chemical elements mentioned above, various amounts of the trace elements Na, Mg, K, Ca, Si, and Zr were observed when the sapphires were analyzed by LIBS and the electron microprobe.

The characteristics of the sapphires from New Zealand are in agreement with data from Australian corundum found in the Barrington Tops region (New South Wales) and sapphires from Pailin, Cambodia, as described by Sutherland et al. (1998). Both deposits also produce bimodal corundum suites with magmatic and metamorphic origins.

Sapphires from the Dunedin area of New Zealand show a wide range of colors. The blue sample is of basaltic origin, while the pink and orange stones are from a metamorphic source. From left to right, the polished samples weigh 0.88 ct, 4.02 ct, 0.65 ct, and 1.04 ct. Photo by Min Htut.

REFERENCE

A Fluid Inclusion Study of the Syenite-Hosted “True Blue” Aquamarine Occurrence, Yukon Territory, Canada

Robert L. Linnen (rlinnen@uwaterloo.ca)1, David Turner2, and Lee A. Groat2

1Department of Earth Sciences, University of Waterloo, Ontario, Canada; 2Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, Canada

Dark blue, gem-quality beryl (also called “True Blue” aquamarine) occurs at a unique locality in the Pelly Mountains in south-central Yukon Territory. The semitransparent-to-translucent aquamarine crystals are contained in tension-gash, crack-seal quartz veins, commonly with siderite/ankerite, fluorite, and allanite as accessory minerals. The veins are hosted by a Be- and REE-rich Mississippian syenite, near the contacts with coeval metavolcanic rocks. The veins also contain fragments of metamorphosed wallrock that are interpreted to be associated with a Jurassic thrusting event.

Fluid inclusions have been observed in several vein minerals (beryl, quartz, fluorite, and carbonate), although most of the microthermometric data in this study are from beryl. Type 1 inclusions are composed of aqueous liquid-vapor phases and are predominantly secondary, with a smaller population of isolated inclusions that are probably primary. Type 2 are liquid-only aqueous inclusions that are either secondary or originated by necking-down. Type 3 are rare, vapor-rich carbonic inclusions that have a poorly constrained origin. Type 4 are liquid-liquid-vapor (aqueous-carbonic) inclusions and have a similar distribution as type 1 inclusions. Types 1 and 4 form a fluid inclusion assemblage that is synchronous with beryl mineralization, but because the crack-seal veins underwent multiple stages of opening, both primary and secondary inclusions were trapped.

The salinities of type 1 inclusions range from ~6 to 24 wt.% NaCl$_{eq}$; they homogenize to a liquid at 139–238°C, and there is an inverse correlation between salinity and homogenization temperature. The initial melting temperature decreases with increasing salinity, to a minimum of ~32°C, which suggests the presence of divalent cations such as Ca$^{2+}$ and Fe$^{2+}$. The Fe content is particularly important since this element is the most likely chromophore in these aquamarines. Type 4 inclusions range in composition from ~5 to 16 wt.% NaCl$_{eq}$ and homogenize to a liquid at 271–338°C. The presence of variable amounts of CO$_2$ in type 1 inclusions and variable salinity in type 4 inclusions suggests that they have recorded three-component fluid mixing. Based on the geologic setting of an apparent relationship with Jurassic tectonism and the compositions and temperatures of the fluid inclusions, the aquamarine most likely originated through the remobilization of Be and Fe from the syenite by metamorphic fluids. This is quite unlike the origin of typical gem-quality aquamarine, which forms in granitic pegmatites.
Chromium Chalcedony from Turkey and Its Possible Archeological Connections

Cigdem Lule-Whipp (cigdem@gialondon.co.uk)
GIA London, United Kingdom

The ancient Romans used green chalcedony as a seal stone and in jewelry, but the source of the material has remained a mystery. Pliny the Elder (1st century AD) mentioned that it came from India; however, no green chalcedony has been found there during modern times. Several researchers have suggested that the Roman chalcedony more likely originated from chromium mines in Anatolia. In this study, four rough green chalcedony samples from Turkey were characterized and compared to similar Roman seals from various antique collections. The samples came from the only known source of Turkish green chalcedony: Sarıçakaya, Eskisehir, in Central Anatolia.

The Turkish chalcedony was translucent to opaque, medium dark bluish green, and generally uniform in color. Diaphanousness was variable within the samples, but chromite inclusions were evenly distributed. Polished areas displayed vitreous luster, but the broken edges of rough material appeared waxy due to the granular structure. Drusy quartz was observed as a secondary filling in the fissures and cracks. The R.I. values were between 1.53 and 1.54, and the S.G. (obtained hydrostatically) was 2.58. The polariscope showed a typical aggregate reaction. The absorption spectrum showed chromium emission lines in the red region, indicating that this element was the cause of the green color. The more translucent material appeared red when viewed with a Chelsea filter and transmitted light. The physical and optical properties of the Anatolian material are within the range of other varieties of chalcedony.

The Anatolian samples were analyzed by whole-rock inductively coupled plasma (ICP) and SEM-EDS. The high Cr content and the presence of euhedral chromite inclusions indicated that this material was not chrysoprase. The SEM analyses also showed areas containing thorium. Geologic relationships and the high Cr content suggest that the Anatolian chalcedony formed via the silicification of serpentinite.

Chromium chalcedony from other localities has been studied by other researchers. The first occurrence was discovered in Zimbabwe in 1953, and the variety was named “mtorolite” (Smith, 1967). Another source was discovered more recently in Western Australia (Krosch, 1990; Willing and Stocklmayer, 2003). Other chromium-bearing chalcedonies have been reported from sources such as Bolivia, the Balkans, and the Ural Mountains (Hyrl childcare, 1999).

Chromium chalcedony from Anatolia and the Roman seals from various collections were compared by means of microscopy and SEM analyses. These chalcedonies showed no differences in color, Chelsea filter reaction in transmitted light, contents of Cr and Ni, or the amount and distribution of chromite inclusions in the matrix. In contrast, the significant layering of black inclusions that is characteristic of “mtorolite” was not present in the Roman seals.

REFERENCES

India—Old Sources and New Finds

H. M. Sultan Mohideen (jeweljem@vsnl.com)
Madras Gem Institute, Alwarpet, Chennai, India

Since ancient times, India has been a major source of gems, most significantly diamonds. Famous diamonds such as the Koh-i-noor and the Darya-e-noor were found in central India in the state of Andra Pradesh. However, with subsequent diamond finds in other locations such as Brazil and Africa, the importance of India as a source of gems diminished.

For more than a century, Jaipur has been a center of gem cutting, where most of the gem rough (mainly emerald) imported from Brazil and Africa was processed. Today, Jaipur is a large cutting center for almost all varieties of gems. But with countries like Brazil developing their own cutting and polishing industries, and with competition from other processing centers such as China and Thailand which have skilled and inexpensive work forces, the Indian gem industry has been striving to find its own local sources of rough. This has led to a sudden interest in exploring and exploiting old mining areas and new localities.

The state of Tamil Nadu, near Sri Lanka, produces high-quality aquamarine, moonstone (in all colors), iolite, star ruby, and many other lesser-known gems such as kornerupine, diopside, enstatite, sphene, bytownite, and all known quartz varieties. Karnataka and Andra Pradesh States produce many ornamental stones such as green aventurine, jasper, and chalcedony, and fine gems such as star ruby. In the past decade, large finds of cat’s-eye chrysoberyl and alexandrite were discovered. The state of Orissa has diamonds as well as nearly all gem garnet varieties (except green colors), chrysoberyls, beryl (green, yellow, and blue), fluorite, apatite, cat’s-eye sillimanite, moonstones, and ruby. The state of Bihar produces very high quality blue moonstone, rose quartz, and garnet (hessonite).

The oldest kimberlite pipes in India are located in the districts of Panna in Madhya Pradesh, Raipur in Chhattisgarh, and Vajratarur and Golconda in Andhra Pradesh. Recently many new kimberlite pipes have been located in these areas by the Geological Survey of India.

There is a renewed interest by the government of Kashmir in exploring the old mines and surrounding areas for the famous blue sapphires. New finds of gem-quality colored tourmaline are reported from this area.

Today, with the exception of organized diamond mining at Panna by the state-owned National Mineral Development Corp., all other gems are mined illegally. This is due to strict
New Gem Localities in Madagascar
Federico Pezzotta (federico.pezzotta@comune.milano.it)
Natural History Museum, Milan, Italy

Madagascar is host to an abundance and variety of gem materials as a result of its long and complex geologic history. The upper Archean to Neoproterozoic crystalline basement of Madagascar experienced locally unusual and even unique geologic conditions during several mountain-building events. Erosion of these rocks occurred during the late to post-tectonic uplift of the basement, and deposited Permian-Mesozoic sediments along the western margin of the Mozambique basin, locally forming immense paleoplacer deposits (e.g., at Ilakaka). More recently, the morphologic and climatic conditions of the island during the past few million years resulted in the formation of abundant secondary residual and alluvial gem deposits.

Even though research and mining of Madagascar’s gems has continued for more than a century, many large areas in the island remain poorly explored and have significant potential for the discovery of new deposits. Within the last few years, the country’s improved political situation has allowed for important developments in the scientific research, mining, and trading of gems.

Recently, two major gem discoveries occurred in Madagascar, both in Fianarantsoa Province: (1) a series of multicolored tourmaline deposits, of both primary and residual nature, in a large area between the villages of Ambatofitorahana and Ambohimasona, along the national road connecting the towns of Ambositra and Fianarantsoa; and (2) a multicolored sapphire deposit of residual nature located 17 km south of the village of Ranotsara, southeast of the town of Ihosy.

The tourmaline deposits are related to a large rare-element miarolitic pegmatite field, surprisingly rather undocumented in the available geologic maps, that extends in a northeast-southwest direction for a distance of ~40 km. Initial discoveries of tourmaline in the area were made in 1995–1996 with the mining of the primary and secondary residual deposits of Valozoro, a few kilometers southeast of Ambatofitorahana. No additional significant discoveries were made until August-September 2005 when, in the Anjoma area (located a few kilometers southwest of Ambatofitorahana), an enormous quantity of multicolored tourmaline (weighing several tonnes, but mainly of carving quality) was found close to the surface at Anjominandihizana (also known as Nandihizana). Soon afterward, additional multicolored tourmaline deposits were discovered south of this area; the most important ones are Fiadanana (a few kilometers south of Valozoro), Ankitsikitsika (about 15 km south of Anjominandihizana), and Antsengy (northwest of the village of Ambohimahaso). Local gem dealers refer to this entire area as Camp Robin, from the name of a village in the center of the district in which much of the gem trading occurs.

The new sapphire deposit, named Marosely, was discovered in October 2005. Transparent bipyramidal sapphire crystals, with colors ranging from blue to purple and, rarely, purplish red (ruby), have been recovered mainly in small sizes (less than 0.4 g). Larger crystals of gem quality are rare, but occasionally they exceed 2 g and produce good-size cut stones (see figure). These crystals originated from the high-grade metamorphic bedrock, and were concentrated in near-surface residual deposits through erosion. The total production of sapphire rough from Marosely, through June 2006, is estimated at about 500 kg.

Afghanistan Gem Deposits: Studying Newly Reopened Classics and Looking for New Deposits
Lawrence W. Snee (lsnee@usgs.gov)
Global Gems and Geology and U.S. Geological Survey (retired), Denver, Colorado

As we refine our understanding of the geologic framework of gem deposits, and as we apply new technology to exploration, we improve our chances of finding new deposits—both in new areas and in newly reopened areas. Currently the U.S. Geological Survey (USGS) is assisting with the Afghanistan reconstruction effort. Our involvement includes geologic mapping, mineral resource assessment, airborne geophysics (gravity and magnetics), aerial photography (orthophoto and synthetic aperture radar), and airborne hyperspectral imaging. All data are being analyzed and published in collaboration with the Afghan Geological Survey.

The Afghan government is particularly interested in the careful study and reassessment of their gem deposits. Despite less-than-perfect logistics, between 2004 and early 2006, this author visited the Panjsher emerald mines (see figure), the Jegdalek ruby deposits, and the lapis mines of Badakhshan, as well as other mineral resource areas that contain gold, copper, chromium, and iron. The USGS intends to continue visiting promising areas to examine and document the mines, to collect samples for laboratory analysis, and to conduct limited on-ground geologic mapping. Laboratory studies of the samples are ongoing and include petrographic, geochemical, geochronologic, X-ray diffraction, fluid inclusion, and hyperspectral measurements. Various sources of satellite imagery, as well as the new airborne data, are being used to define the geologic framework and extent of the gem deposits. We are also translating and evaluating existing geologic maps and literature; much of this literature is in Russian and of limited availability, but several dedicated Afghan geologists were able to save copies during the many years of war. Collaboration with other colleagues and governments in south-central Asia will increase our understanding of the regional extent and potential for similar deposits throughout the region.

As Afghanistan regains political stability, additional opportunities will open for exploitation of known gem deposits, and new ones will undoubtedly be found. The Afghans believe that
of all their mineral resources, the gem deposits have the greatest potential to be easily and quickly developed. However, mining methods and mine safety must be improved to ensure the adequate development of these resources. The Afghan government, USAID, the World Bank, and the Asian Development Bank are currently in the process of contracting experts to help the local Afghan miners develop safe and profitable gem mining in Afghanistan.

The New Komsomolskaya Mine in Yakutia, Russia: Unique Features of its Diamonds
Nikolai V. Sobolev (sobolev@uiggm.nsc.ru)
Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

The Komsomolskaya diamond mine is located in the Daldyn-Alakit diamondiferous kimberlite field in the Sakha region of western Yakutia, Siberia. Its position is 15 km northeast of the Aikhal diamond mine. Its age (358 million years) is within the range of all productive Yakutian diamond mines (344–362 million years). As with other Yakutian diamond mines, Komsomolskaya produces a high proportion of perfect diamond octahedra. Some of these diamonds contain mineral inclusions that are dominated by chromite (about 60%), which is typical of the peridotitic suite of inclusions found in diamonds of the same size fraction from other Yakutian diamond deposits. However, there are several features of the Komsomolskaya diamonds that are unique to this deposit. These include a higher proportion of whole crystals compared to other Yakutian mines, which results in a higher than average price-per-carat of the diamond production. Additionally, there is a much higher proportion (more than 10 times) of diamonds containing eclogitic inclusions as compared to other Yakutian mines. Evidence for a much deeper source of some of the diamonds is provided by the discovery of an inclusion within a microdiamond that consisted of a majoritic garnet containing a pyroxene solid solution. This mine is also unique for containing the highest proportion (on a worldwide basis) of diamond inclusions of extremely Cr-rich pyrope. Therefore, compared to all the well-known Yakutian diamond mines, Komsomolskaya shows a number of unique features.

In-situ Corundum Localities in Sri Lanka: New Occurrences
Saman Tennakoon1, Mahinda Rupasinghe (mrmahinda@yahoo.com)1, and Chandra B. Dissanayake2
1Sabaragamuwa University of Sri Lanka, Buttala; 2Department of Geology, University of Peradeniya, Sri Lanka

Sri Lanka is famous for fine gemstones, particularly corundum. Most are obtained from alluvial gem gravels that occur as lenses and bands in the riverbeds and stream valleys of Sabaragamuwa Province, particularly in the Ratnapura district. Precambrian metamorphic rocks underlie 90% of the island and are divided into four major lithologic divisions—the Highland, Vijayan, Wanni, and Kadugannya Complexes. Most of the major gem fields in Sri Lanka
lie in the Highland Complex. High-grade Precambrian metamorphic rocks of granulite-facies conditions are characteristic of these gem-bearing source rocks. Although there have been isolated examples of in-situ gem discoveries in Sri Lanka over the past 100 years, the origin of these deposits has not been thoroughly studied.

In 2004, the authors discovered five corundum deposits in the region around the towns of Wellawaya and Buttala, near the boundary between the Highland and Vijayan Complexes in southeastern Sri Lanka (see figure). The first new deposit was located in Gampangula, where well-formed, hexagonal, translucent pale blue and gray corundum crystals were found on a mountain top. The crystals varied from 1 to 15 cm (most were 5 cm), and they were hosted by partially weathered rock that was easily breakable. The quantity of corundum at this deposit is unknown.

The second deposit was discovered on a mountain top in Bubulagama, which lies 3 km from the Gampangula deposit. Bluish and pinkish corundum crystals were found in the partly weathered source rock. Although these crystals (1 to 3 cm long) were of low gem quality, the deposit contained a greater amount of corundum than at Gampangula. Generally the corundum crystals were accompanied by biotite, sillimanite, perthitic potassium feldspar, plagioclase, and accessory spinel.

The other corundum deposits were found in the villages of Galboka, Makaldeniya, and Gampaha, which are close to the other two deposits. Landslides had occurred earlier in these regions, and gem-quality pale blue corundum and milky-colored “geuda” were found in the overburden.

The Kirindioya River, which flows through this area, contains alluvial deposits with a variety of gem minerals, such as corundum, spinel, garnet, zircon, and tourmaline. The in-situ occurrences mentioned above may be the source of alluvial corundum in this region. Geologically, an important feature of these five corundum localities is that they lie along the boundary between the Highland and Vijayan Complexes.

A series of in-situ corundum occurrences have been found in the region around the towns of Wellawaya and Buttala, which are 11 km apart in southeastern Sri Lanka. Geologically, this area lies near the boundary between the Highland and Vijayan Complexes.
ABSTRACTS OF POSTER SESSIONS:
A MARKETPLACE OF NEW IDEAS

This section contains abstracts of poster presentations that were given at the Gemological Research Conference and the International Gemological Symposium. The GRC poster abstracts were reviewed by the GRC Committee (see p. 80), and the Symposium posters were reviewed by the Symposium Poster Session Committee:

Shane Elen GIA Research, Carlsbad
Sheryl Elen Richard T. Liddicoat Library and Information Center, GIA, Carlsbad
Al Gilbertson GIA Research, Carlsbad
Caroline Nelms Richard T. Liddicoat Library and Information Center, GIA, Carlsbad
Thomas W. Overton Gems & Gemology, GIA, Carlsbad
Robert Weldon Richard T. Liddicoat Library and Information Center, GIA, Carlsbad

All of the poster presenters and committee members are thanked for making the poster session, which was kindly sponsored by Swarovski, such an important and informative part of the GRC and Symposium.

Dona M. Dirlam
Chair of Poster Session Committee

GEMOLOGICAL RESEARCH CONFERENCE

120 Diamond Treatments
121 Gem Characterization Techniques
128 General Gemology
145 Geology of Gem Deposits
152 Laboratory Growth of Gem Materials
155 New Gem Localities

4TH INTERNATIONAL GEMOLOGICAL SYMPOSIUM

157 Colored Stones
158 Diamonds
161 Gemology Education
163 Gemology Topics
166 Gemstone Marketing
166 Jewelry
169 Pearls
Diamond Treatments

High-Pressure, High-Temperature (HPHT)
Diamond Processing: What Is this Technology and How Does It Affect Color?
Sonny Pope (spope@sundancediamonds.com)
Sundance Diamonds, Orem, Utah

HPHT processing of gem diamond is actually a simple process to understand. If a diamond is heated to above 750°C in air, it will start to burn. However, if the diamond is under extreme pressure (i.e., similar to natural diamond formation), then even temperatures up to 2000°C will not cause significant degradation. These extreme annealing temperatures create the conditions for diamond to change color.

While the concept is easily understood, many do not fully appreciate the investment and maintenance demanded by this technology. Sundance Diamonds uses a propriety press that was developed for HPHT processing that costs close to $1 million. Providing the extreme conditions necessary for this process creates the need for continual maintenance with costly materials. Sundance Diamonds could not survive without its parent company and their team of scientists and engineers to support and maintain the equipment. Even with continual investment to reduce the risks and optimize the outcome, HPHT treatment remains a volatile process with the possibility of fracture and complete loss of the diamond being treated.

Traditionally, the HPHT process has been used to reduce brown hues in type IIa diamonds to appear colorless or near colorless. Now, through years of research, almost any brown diamond can benefit from HPHT technology. Nitrogen, a common diamond impurity, can be manipulated at high temperatures to yield colors that are rare in nature. Green and intense yellow were the first colors to show promise; with irradiation, pink and purple stones are now possible. With ongoing research we hope to be able to present a whole rainbow of reproducible colors. All of these niche colors offer the potential for additional usability and profit from brown diamonds.

Natural Diamond Enhancement: The Transformation of Intrinsic and Impurity Defects in the Diamond Lattice
Victor G. Vins (evins@academ.org)1, Alexander P. Yeliseyev2, Sergei V. Chigrin1, and Alex G. Grizenko3
1New Diamonds of Siberia Ltd., Novosibirsk, Russia; 2Institute of Mineralogy and Petrography, Siberian Branch of the Russian Academy of Science, Novosibirsk; 3Lucent Diamonds Inc., Lakewood, Colorado

Changes in diamond crystal structure that occur during high-pressure, high-temperature (HPHT) treatment are discussed in this report. About 1,200 type Ia and about 10 type IIa diamonds with varying degrees of brown color associated with plastic deformation were investigated in this study. Two types of changes took place during HPHT treatment at temperatures ranging from 1800 to 2300°C: (1) decrease in plastic deformation, and (2) thermally activated aggregation and dissociation of nitrogen-related defects.

A decrease in plastic deformation occurred at all temperatures of the HPHT treatment and was accompanied by a reduction of dislocation density of at least 1,000 times and, therefore, an almost complete decoloration of the type IIa diamonds. Dislocation movement within the crystal lattice started at temperatures exceeding 1800°C, and this caused the formation of vacancies and interstitials; their concentrations were always higher in diamonds exhibiting greater dislocation density.

In the type Ia diamonds, vacancies were trapped at the main nitrogen aggregates (A and B), which led to the formation of H3 and H4 color centers, respectively. Absorption spectra of the treated diamonds revealed increased absorption due to N3 and C centers. Absorption spectra of the treated diamonds revealed increased absorption due to N3 centers and a new absorption at wavelengths below 550 nm due to C centers. The formation
defects in single-crystal CVD

Synthetic diamond studied by optical spectroscopy with the application of uniaxial stress

David Charles (david.charles@kcl.ac.uk), Alan T. Collins, Gordon Davies, and Philip Martineau

King’s College, London, United Kingdom; Diamond Trading Company (DTC) Research Centre, Maidenhead, Berkshire, United Kingdom

It is now possible to grow gem-quality, single-crystal synthetic diamond by chemical vapor deposition (CVD). We can
expected that, at some time in the future, it will become viable to commercially produce this material for the gem trade. It is straightforward for a well-equipped gemological laboratory to differentiate CVD synthetic diamond from natural diamond and from synthetic diamond produced by high-pressure, high-temperature synthesis. Nevertheless, it is important to understand the defects that are characteristic of CVD synthetic diamond. One valuable technique in characterizing defects in diamond is the measurement of optical absorption and luminescence spectra, together with the application of uniaxial stress. Such measurements can determine the symmetry of a given defect. In principle, this knowledge may help to establish an atomic model for the defect. In favorable cases, isotopic substitution can indicate the chemical nature of one or more of the constituents of a defect.

The CVD synthetic diamond samples, shaped as rectangular blocks (approximately 1.25 mm long), were squeezed between two hardened steel anvils that generated stresses up to approximately 2 GPa. Stresses were applied along the [001], [110], and [111] crystal directions; this was typically achieved by using two specimen orientations, one with [001], [110], and [110] surfaces and the other with [111], [110], and [112] surfaces. Photoluminescence and cathodoluminescence (CL) spectra from single-crystal CVD synthetic diamond are normally dominated by emission of a zero-phonon line at 575 nm, associated with the nitrogen-vacancy center in its neutral charge state. In addition, such specimens frequently exhibit sharp emission lines at 466.5, 467.0, 496.8, 532.8, and 562.5 nm in the CL spectra. While under uniaxial stress, the 466.5, 496.8, and 562.5 nm center showed no emission parallel to the [001] growth direction, indicating that a preferential orientation occurred during growth. We found that the symmetries were “rhombic I” for the 466.5 and 496.8 nm defects, and “monoclinic I” for the 562.5 nm center. A plausible structure for the rhombic levels is V-X-V, where the V are vacancies and X is a carbon atom or an impurity atom.

Comparison of the CL emission line positions in specimens grown with 15N and 14N added to the gas phase showed an isotope shift for the 532.8 nm line. This clearly demonstrates that the defect giving rise to this line involves nitrogen; unfortunately the uniaxial stress measurements indicated that the symmetry of this defect is low. Consequently, determining the detailed structure of this center will present a challenge.
Luminescence, Reflected-Infrared, and Reflected-Ultraviolet Digital Photography: Gemological Applications

Shane Elen (selen@gia.edu)\(^1\) and Sheryl Elen\(^2\)
\(^{1}\)GIA Laboratory, Carlsbad; \(^{2}\)R.T. Liddicoat Jr. Gemological Library and Information Center, GIA, Carlsbad

Until the advent of relatively inexpensive digital cameras, luminescence photography was a time- and film-consuming process. Reflected infrared and ultraviolet film photography, a process that records the IR or UV light reflected by a sample, was typically beyond the reach of the average photographer. However, digital photography produces near-instantaneous results with no film costs, and also provides an opportunity to visualize features that are subtle or invisible to the human eye.

Visible luminescence can provide visual information that relates directly to a gemstone’s history. When properly documented, luminescence images become a valuable identification and teaching tool. However, many luminescence images, particularly of pearls, suffer from poor exposure, lack of detail, and poor color definition. Through the application of the correct lighting and the use of filters, digital photography and image processing can resolve many of these drawbacks, often resulting in fine detail that is normally difficult to observe by eye or capture on film.

The UV and near-IR regions of the spectrum often contain valuable absorption information that may be used to identify natural, synthetic, and treated gem materials. These data beyond the visible range are typically obtained by spectroscopy. However, it is possible to visualize these regions of the spectrum through false-color photography. Fortunately, the charge-coupled devices (CCDs) used in many digital cameras are sensitive to these invisible regions of the spectrum and record them in one, or more, of the visible color channels (red, green, or blue).

In the gemological literature, the authors found only two prior applications of reflected IR photography for cut and polished gem materials (Komatsu and Akamatsu, 1978; Fjordgren, 1986), and none for UV-reflected photography. This may be partially indicative of the difficulties related to these techniques when using 35 mm photographic film.

Possible gemological applications include pre-screening of gem parcels, educational aids, and the identification of natural, synthetic, and treated gem materials, such as pearls (see figure). However, luminescence and reflected UV or IR photography could potentially be applied to any natural gem material in which the synthetic or treated-color counterpart exhibits different luminescence or reflectance properties in the UV or near-IR region of the spectrum. These might include, but are not limited to, identifying natural and treated blue sapphires, identifying diamond types and simulants, and separating blue sapphires of metamorphic and magmatic origin.

REFERENCES

Magnetic Separation of Gemstones
Sylvia M. Gumpesberger (sgumpesberger@hotmail.com)
Canadian Gemmological Association, Toronto, Ontario, Canada

Some gems are more magnetic than others, making the magnetic separation of gem materials possible. Historically, this approach was hindered by the low strength of available magnets such as aluminum-nickel-cobalt (“Alnico”). Powerful and focused neodymium-iron-boron (NdFeB) magnets were used by this author to more closely examine the magnetic characteristics of gem materials. A 0.6 × 2.5 cm rod-shaped magnet and a pair of 0.25 × 0.6 cm disk magnets were selected for this study through experimentation.

Initial and key separations were made using three methods of different mechanical advantage:

- **Direct method:** magnet pulled responsive gems across a low friction surface.
- **Pendulum method:** responsive gems attracted a magnet suspended from a thread; conversely, the magnet attracted responsive gems suspended in a gem bag.
- **Floating method:** magnet attracted or repelled responsive floating gems or responsive gems attracted or repelled a floating magnet.

Mathematical formulas were not needed. Hundreds of specimens were tested, including gems in nonmagnetic settings. Quarantined space minimized competing magnetic fields and air currents while using the more sensitive pendulum or floating magnet methods.

Starting with the direct method for loose stones, the gems exhibiting observable magnetic interactions were separated out, which immediately narrowed the range of possible gem identifications. The pendulum and occasionally the floating methods offered greater mechanical advantage or sensitivity for testing larger specimens, as well as those lacking flat faces such as gem rough, those in nonmagnetic settings, and samples requiring detection with very subtle susceptibilities (i.e., diamagnetic or repellant materials, garnet-and-glass doublets topped with a thin slice of garnet, etc.).

The testing showed that gems containing essential Fe and/or Mn tended to respond to varying degrees, with Mn-rich specimens exhibiting a stronger response. The possible influences of element valence and magnetic inclusions were pondered, as were the challenges regarding isomorphous replacement in some gems (e.g., Fe and Mn in tourmaline and garnet). Certain colors of cubic zirconia and all colors of gadolinium gallium garnet (GGG) also responded, the latter relatively strongly. Many useful initial and key separations were made (e.g., see table in the Ge&G Data Depository at http://www.gia.edu/gemsandgemology). Notable separations within the garnet group included spessartine vs. hessonite, demantoid vs. tsavorite (approaching end-member grossular), and almandine vs. pyrope (approaching end member).

A Variation on the Crossed Filters
Approach Using Pocket LED Light Sources
Sylvia M. Gumpesberger (sgumpesberger@hotmail.com)
Canadian Gemmological Association, Toronto, Ontario, Canada

Gemologists have widely employed UV radiation to stimulate fluorescence in gem materials. However, the recent commercial availability of pocket-sized, near-monochromatic light emitting diode (LED) units has revived the use of G. G. Stokes’ crossed filters approach because LEDs easily substitute for filtered incident light, as previously demonstrated by crossing a blue LED with a red filter (see Lamarre, 2002; Gumpesberger, 2003; Hoover and Williams, 2005). (Note: Crossed filters should not be confused with crossed polarizing filters.)

The author has experimented with variations on the classic crossed filters approach to determine which qualities of light stimulate visible red luminescence in Cr-bearing gems including ruby, red spinel, emerald, and alexandrite. The experiments tested various frequencies of near-monochromatic LED sources including red, yellow, green, blue, and long-wave UV (with peak outputs of 630, 592, 525, 470, and 370 nm, respectively) and a red LED pocket laser (630–680 nm), in combination with gel color filters. The observed effects were compared to those produced by conventional long- and short-wave UV lamps. Short-wave LEDs do not currently exist.

In a dark environment, each LED light source was individually directed at each gem specimen at close range. Single and combined gel filters were selected to absorb various incident wavelengths while transmitting some visible red fluorescence. In the case of the red LED and laser LED pocketlights, care was taken to select a combination that absorbed the visible red incident wavelengths while transmitting the longer visible red fluorescent wavelengths.

In many cases, crossing filters with various visible incident wavelengths stimulated a more evident red fluorescence in these Cr-bearing specimens than conventional long- and short-wave UV incident wavelengths. Visible red incident wavelengths were often surprisingly effective, notably in emerald (i.e., the red luminescence was distinct from the transmission of red incident light).

To simplify potentially complex light/filter combinations, gemologists could benefit from crossing visible blue and visible red LED pocketlights with a Chelsea filter to effectively detect the presence of Cr in gem materials. Further experimentation is continuing with diamonds, which have shown varying results.

REFERENCES

Cathodoluminescence Spectroscopy to Identify Types of Natural Diamond
Hisao Kanda (kanda.hisao@nims.go.jp)
National Institute for Materials Science, Tsukuba, Japan

Natural diamonds are classified into types IaA, IaB, Ib, IIa, and IIb. IR absorption spectroscopy is useful for identifying diamond type. However, this method is limited because it only provides average information from a bulk volume; it is difficult to obtain a spectrum from a microscopic area. Since both type I and type II domains may be found in the same crystal, identifying the distribution of diamond types within microscopic regions of a sample would provide a better understanding of its composition.

Cathodoluminescence (CL) spectra have the potential to identify diamond types on a microscopic (i.e., micrometer) scale. Although a variety of luminescence bands have been reported in diamond (see Zaitsev, 2001), a direct correlation between these bands and diamond type has not been well established.

Thirty natural diamonds were polished along [110] faces. The samples were cooled to about 80 K, and CL spectra were acquired from various points on the polished surfaces and CL images were also taken of the surfaces using a scanning electron microscope fitted with a spectrometer. Micro-FTIR spectra were taken of a small area (0.1 x 0.1 mm) on the polished surfaces.

According to the FTIR measurements, four of the diamonds were type IIa. No type IIb diamonds were encountered. The micro-FTIR spectra showed an inhomogeneous distribution of nitrogen impurities. Nitrogen-free (i.e., type IIa) regions were found even in the type Ia crystals.

The following correlations between the diamond types and CL bands were determined:

1. Type IaA: N9 system with a zero phonon line (ZPL) at 236 nm, and band-A with a maximum at ~415 nm.
2. Type IaB: peaks at 243.5, 246, 248, and 256 nm, and the N3 system with a ZPL at 415 nm.
3. Type IIa: FE system, appearing at 235, 242, and 250 nm.

The CL spectra also provided information on the plastic deformation of the diamonds. The presence of the 2BD system, the band-A line, the 490.7 nm line, the H3 system, or the 575 nm system can each provide evidence of plastic deformation. There are two types of band-A luminescence: in type IaA, it has a maximum at ~415 nm, while diamond containing plastic deformation has a band-A maximum at ~435 nm. The various broad bands were described by Collins (1992).

The CL measurements detected nitrogen impurities more sensitively than the IR spectra, and nitrogen-related peaks were observed in the CL spectra of type IIa diamonds. Despite this inconsistency, CL measurements can provide approximate information on diamond type within a microscopic area.

REFERENCES

The Identification of Gemstones by Photoluminescence: Synthetic and Natural Mg-Al Spinels
Leonardo Maini1, David Ajò1, and Sylvana Ehrman (sjehrman@msn.com)2
1Istituto di Chimica Inorganica e delle Superfici, Consiglio Nazionale delle Ricerche, Padova, Italy; 2Scientific Methodologies Applied to Cultural Heritage Inc., Silver Spring, Maryland

Spectroscopic properties of transition-metal ions, even at trace levels, allow the use of optical spectroscopy as a non-destructive test for discerning between natural and synthetic gemstones (both loose and mounted). The most important peculiarity of the spinel structure is cation inversion and, for some synthetic crystals, the presence of vacancies arising from an Al:Mg ratio higher than 2. Both cationic disorder and vacancies give rise to a great variety of photoluminescent behaviors of Cr3+ in Mg-Al spinels.

Due to the particular interaction between the Cr3+ ion and its local environment in the spinel structure, the mere collection of spectral data referring to samples of known origin seems to be inadequate to provide any general predictive criterion for assessing the origin of unknown samples. We propose a multidisciplinary comprehensive approach, based on the synthesis through different methods (Verneuil and flux) of appropriate spinel standards in our laboratories, in order to compare under uniform conditions their spectral features to those of natural spinels (both untreated and heated). Both natural spinels and their synthetic analogues were analyzed by means of electron microprobe and X-ray diffraction to define the composition and structural details of each sample.

Accurate photoluminescence (PL) spectra of 16 of these crystals were then collected at 6, 77, and 298 K, using different laser excitation wavelengths. The careful interpretation of the spectra of this set of samples provided general predictive criteria, and many hints on the conditions under which PL can effectively be used as a probe to identify the origin of chromium-doped spinels. Our criteria focus, among others, on intensity ratios measured under certain excitation wavelengths, as well as on line widths in the region between 680 and 700 nm. A coherent description of the dependence of the spectral features upon the history of each sample was achieved. We proved for the first time that even spinels with the same cation inversion and chemical composition—which are almost identical under extensive X-ray diffraction analysis—can show wide variations in their PL spectral differences that are mainly related to the short-range Cr3+ environment.
Fingerprinting Gem Beryl Samples Using Laser-Induced Breakdown Spectroscopy (LIBS) and Portable X-ray Fluorescence (PXRF)

Nancy J. McMillan (nmcmilla@nmsu.edu)1, Catherine E. McManus1, Tori L. Gomez2, Russell S. Harmon1, Frank C. De Lucia Jr.3, and Andrey W. Miziolek3

1Dept. of Geological Sciences, New Mexico State University; Las Cruces; 2Environmental Sciences Division, U.S. Army Research Office, Research Triangle Park, North Carolina; 3Weapons & Material Research Directorate, U.S. Army Research Laboratory, Aberdeen, Maryland

Minimally destructive chemical analysis of gem-quality minerals has many possible applications, including the fingerprinting of single stones, the identification and tracking of stolen or lost stones, and evaluating the provenance of gemstones. The ideal methods for gem analysis should be simple to use, reliable, and minimally destructive. The challenge, however, is that simple and minimally destructive techniques tend to yield results with poorer precision and accuracy than traditional, laboratory-based analytical techniques. As part of a larger study on the chemical fingerprints of beryls, the present authors have obtained data on beryls by four simple, rapid, and portable techniques: LIBS spectra in air, LIBS spectra in argon, PXRF spectra, and PXRF elemental concentrations. LIBS is exceptional in its ability to detect the presence of light elements (e.g., Li, B, Be, and Na), allowing for accurate determination of stoichiometric relationships. PXRF is complementary in that it detects heavy elements well, but in general cannot detect elements lighter than P.

Six gem-quality uncut beryls (aquamarines from Pakistan, Mozambique, India, and China; heliodor from Brazil; morganite from Afghanistan) were analyzed by the four techniques with the goal of uniquely identifying individual specimens. Five LIBS spectra, containing peaks for most elements lighter than La, were collected from different locations on the same crystal face, each after a single cleaning shot. Three PXRF spectra were collected from each sample (15 mm diameter area); elemental concentrations (Ti, Cr, Mn, Fe, Co, Cu, Zn, Rb, Sr, Ag, Ba, and Hg) were then calculated from the spectra by the PXRF software. The LIBS analyses left craters of approximately 100 µm in diameter on the surfaces of the crystals; PXRF analysis was nondestructive.

The following calculations were made to evaluate the parameters by which each stone could be uniquely identified: (1) the ratio of regression of a single-shot LIBS spectrum, single PXRF spectrum, or PXRF concentrations to each of the other spectra or concentrations; and (2) the ratio of the regression of a single LIBS spectrum, single PXRF spectrum, or PXRF concentrations to the average spectrum or concentrations for that specimen. Identification success rates, as defined by the highest correlation coefficients of the linear regressions, are given in the table.

These results will be verified and expanded in two ways: (1) using a larger and more diverse sample set, and (2) testing the double-pulse LIBS technique for this purpose.

Percentage of gem-quality beryl specimens that were successfully fingerprinted using variations of LIBS and PXRF and different calculations.

<table>
<thead>
<tr>
<th>Method</th>
<th>LIBS in air</th>
<th>LIBS in argon</th>
<th>PXRF concentrations</th>
<th>PXRF spectra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single shot/</td>
<td>74.2%</td>
<td>61.7%</td>
<td>61.1%</td>
<td>66.7%</td>
</tr>
<tr>
<td>single shot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single shot/</td>
<td>96.7%</td>
<td>90.0%</td>
<td>83.3%</td>
<td>100%</td>
</tr>
<tr>
<td>average spectrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Color Grading of Color-Enhanced Natural Diamonds: A Case Study of Imperial Red Diamonds

Sergei Smirnov1, Sergei Ananyev2, Victoria Kalinina1, Victor Vins (evins@academ.org)3, and Alex Grinzenko4

1Siberian Gemological Center, Novosibirsk, Russia; 2Krasnoyarsk State University of Nonferrous Metals and Gold, Krasnoyarsk, Russia; 3New Diamonds of Siberia Ltd., Novosibirsk; 4Lucent Diamonds Inc., Lakewood, Colorado

Natural fancy-color diamonds are rare and highly valued by the gem trade. The development of various color enhancement techniques has led to the appearance of commercially available yellow, green, and red color-enhanced natural diamonds. Although the color grading of natural-color diamonds is challenging, it is becoming a routine procedure for producers of color-enhanced diamonds. In the system for natural-color red and pink diamonds presented by King et al. (2002), some grades covered a wide range of tones and saturations of the same hue, and the system required comparison with a collection of reference diamonds (which would be extremely expensive). The lack of generally accepted color grading scales and relatively inexpensive master stones for colored diamonds created the need to develop special scales and color grading procedures for the pink and red color-enhanced diamonds known under the trademark “Imperial Red.”

The color scale is based on the standard approach to describing colored gemstones. The GIA GemSet Color Book was used to compare the colors. All diamond samples (more than 200) were observed with a daylight lamp, a GIA DiamondLite, and the overhead daylight lamp of a Gemolite Ultima B gemological microscope. Most of the Imperial Red diamonds were graded as red with an orange or purple modifying color. Some samples were graded as purple with a red modifying color. Based on the color description and the ratio of diamonds of different color grades, a color-grading chart for Imperial Red diamonds was developed (see figure). The most attractive samples within each color grade were determined to have a tone less than 6 and a saturation greater than 4. The least attractive samples showed dark tones (7–8) and low saturations (1–2).

Prices for color-enhanced diamonds were calculated using color coefficients and this color chart. Assuming that the cost of color-enhanced diamonds cannot be lower than enhancement expenses, or higher than the price for colorless...
diamonds, we determined the coefficients that increase the price of color-enhanced diamonds (from yellow to red). Depending on tone and saturation, the price increase extends diagonally across the chart shown here from left to right and from the bottom to the top. To help customers understand the price differences between different color grades of Imperial Red diamonds, the following terms are used: Dark, Deep, Light, Brilliant, and Excellent. The color-grading chart can be used for all types of color-enhanced diamonds.

Reference

Study of the Biaxial Gemstones on the Refractometer
Darko B. Sturman (darkos@rom.on.ca)
Royal Ontario Museum, Toronto, Ontario, Canada

Observations on the refractometer of biaxial gemstones are best shown on diagrams where rotation angles are plotted on the horizontal axis with corresponding refractive indices on the vertical axis. In general, two shadow edges are observed during the rotation. Each shadow edge has one position where \(\beta \) can be determined. The polarizing filter must be used to distinguish between the “true” and “false” \(\beta \) before the optic sign can be determined.

Sometimes, optic sign is insufficient for identifying biaxial gemstones with overlapping refractive indices (e.g., for topaz/danburite or peridot/sinhalite/diopside), and terms such as “strongly negative” or very complex descriptions of the movements of the shadow edges are required. However, these complex descriptions, as well as the use of the polarizing filter, can be avoided in many cases by the simple determinations of the optic angles for both possible \(\alpha \) readings (one from each shadow edge). It takes only several seconds longer to record these \(\beta \) readings at the time when \(\gamma \) and \(\alpha \) indices are determined. The procedure for determining the optic angle is as simple as determining the optic sign. Partial birefringences \(\gamma \), \(\beta \), and \(\beta-\alpha \) are calculated first, and then entered into a diagram where the optic angle is found.

This observation gives two solutions that are compared to the optic angles of gemstones with overlapping refractive indices. In many cases only one match is found. However, on rare occasions when two calculated optic angles match the optic angles of two different gemstones, the only solution is to use the polarizing filter.

Inclusions in White-Gray Diamonds of Cubic Habit from Siberia
Sergey V. Tirkov (tirkov@igem.ru)\(^1\), Yulia P. Solodova\(^2\), Anatoliy I. Gorshkov\(^1\), Larisa O. Magazina\(^1\), Anatoliy V. Sivtsov\(^1\), Elena A. Sedova\(^2\), Murad D. Gasanov\(^2\), and Georgiy G. Samosorov\(^2\)

\(^1\)Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Moscow, Russia; \(^2\)Russian State Geological Prospecting University, Moscow

Some kimberlite pipes of the Siberian platform contain unusual semitransparent diamonds of cubic habit that are white-gray or milky gray. In some stones, zones with straight or curved boundaries showing various color intensity (from white and light gray to dark gray) can be observed. The coloration is caused by the presence of numerous fine inclusions. The nature of the inclusions and the cause of the white-gray coloration were examined in this study.

The microinclusions were studied with a JEOL JEM-100C transmission electron microscope (TEM) equipped with a Kevex 5100 energy-dispersive X-ray spectrometer, and with a JEOL JSM-5300 scanning electron microscope equipped with an Oxford LINK ISIS energy-dispersive X-ray spectrometer. Micrometer-sized inclusions were identified by their chemical composition as determined by energy-dispersive spectroscopy and by the structural parameters calculated from TEM electron diffraction patterns. Three white-gray diamond cubes were studied from the Jubileynaya kimberlite pipe.

The diamonds contained abundant microinclusions of calcite, which likely caused their coloration. In addition, they contained various assemblages of microinclusions of native Cu and Fe, Fe-Cr and Fe-Cr-Ni alloys, polydymite, Cu and Fe-Ni sulfides, anhydrite, apatite, and some other minerals. Microinclusions of native metals and sulfides were most abundant in darker zones of the diamonds.

In some early work, carbonate inclusions in diamond were thought to have an epigenetic origin. Later research demonstrated that carbonate inclusions in perfect octahedral diamond crystals actually may have a primary origin (McDade and Harris, 1999; Leost et al., 2003). It therefore may be suggested that in white-gray diamonds, primary inclusions of aragonite or disordered calcite (which are stable at the pressures and temperatures within the diamond stability field; see Suito et al., 2001) later transformed into calcite upon cooling. Alternatively, the diamonds initially may have entrapped carbonate melt or fluids, from which calcite later crystallized, as suggested for various unusual inclusions in cubic diamonds that are not stable at the pressures and temperatures of diamond crystallization (Klein-BenDavid et al., 2006).
Acknowledgments: This work was supported by grant No. 04-05-64606 from the Russian Foundation of Basic Research.

References

General Gemology

Ruby-Sapphire Quality Grading for the Gem Trade
Wilawan Atichat (wilawan@mozart.inet.co.th)1, Pengchan Chandayot2, Visut Pisutha-Arnond1-3, Pornsawat Wathanakul1-4, Sakda Siripant1, Sakrapee Saejoo1, Chotima Kunwisutpan1, Boontawee Sriprasert1,5, and Poor.

For clarity grading, a Dialite Flip light source was positioned on a dark background and graded using a 10× loupe. For confirmation purposes, the clarity of the stones was graded again with the unaided eye at 30 cm distance (and 15–20 cm from the light source) in the face-up position against a white background. The clarity grading was evaluated by using the GIT-GTL scoring system. As for the cut grading, factors for brilliance, face-up proportions, profile proportions, and finish were taken into consideration. The overall quality grading was usually performed by at least three experienced gemologists.

The final evaluation of these corundum standard sets by gem traders in Thailand revealed that they are generally compatible with the quality grading being used in the trade. GIT-GTL is currently using these master stone sets for ruby-sapphire grading for some clients in Thailand and Japan.

Coated Topaz
Riccardo Beli (tbeli@agta-gtc.org), Lore Kiefert, and Min Htut
AGTA Gem Testing Center, New York

Coated topaz has become quite popular, and the material is now available in a wide variety of colors such as pink, orange, blue to green, and with a multicolored effect. Though attractive, most of the coatings are produced using a simple dye or a sputtering method as described by Schmetzer (2006), and are easily scratched off. Some of the coatings (especially pink) initially deceived gemologists because the coatings were applied only to the pavilion. Therefore, EDXRF analysis (normally performed on the table) only detected topez. When such stones are analyzed from the side, the coating can be detected by its high Ti concentration.

Another type of coating produces green and blue colors, and the manufacturer claims that this process is diffusion-related rather than a simple coating. An examination by the authors showed that the coloring agent is not removed as easily as with other colors of coated topez, and neither scratching nor exposure to acetone affected it. However, overnight immersion in hydrofluoric acid, which dissolves silica minerals, caused a discoloration (see figure), but no etching of the topez. Subsequent experiments on green-coated topez by immersion in hydrochloric acid and hydrofluoric acid for one hour appeared to dissolve the coating just as efficiently. These experiments proved that diffusion of chemical elements into the topez itself had not occurred. However, some chemical reaction between the topez and the coating must have taken place to prevent the coating from being easily removed. Analysis with EDXRF spectroscopy revealed Co as the color-giving element, while LIBS analysis showed additional traces of Ca, Na, Li, and K in the top layer.

Schmetzer (2006) described, among others, a process which produces a more durable surface coating, and is the one most likely applied to our samples. This technique is based on heat treatment of faceted gem materials in a transition metal–bearing powder. The transition metal used for blue-to-green colors is Co, the most prominent element found in the coating of our topez samples.
Three-Dimensional Solid Modeling in Applied Diamond Crystallography

Mike Botha (mbotha@auroracollege.nt.ca), Courtenay Keenan, and Robert Ward

Aurora College, Yellowknife, Northwest Territories, Canada

Aurora College offers a diamond polishing training program in Yellowknife. The curriculum consists of applied mathematics, applied diamond crystallography, diamond history, diamond grading, and three-dimensional solid modeling with a significant practical diamond polishing component. The program is designed to provide students with the cognitive and practical skills to successfully enter the Canadian secondary diamond industry. The program attracts local, national, and international students. Up to 30 students graduate from this program each year.

Since diamond is the hardest known material, we have the dilemma that only diamond is available to cut diamond. Therefore, students need to understand directional hardness and know to avoid cutting facets in octahedral and hexahedral directions. A sound understanding of the crystal structure is imperative if a diamond is to be fashioned cognitively to the highest possible cut grade.

Three-Dimensional Solid Modeling

To enable our students to quickly assimilate the complexities of the diamond crystal, we have developed a course using Autodesk Inventor to demonstrate the following:

- Tetrahedral structure
- Unit cell
- Mathematical cube analysis
- Crystal morphologies
- Assembly of various crystal models relative to coordinates
- Animation of the preceding assembly
- Interrelation of diamond crystal morphologies
- Crystal planes

Diaphere

This is a new concept in applied diamond crystallography and allows the students to correctly identify the hexahedral, octahedral, and dodecahedral planes. It also explains the polishing directions and points of directional transition in relation to the different crystal planes in three dimensions. The purpose of this training model is to enable students to cut and polish diamonds without having to “find the grain” of a diamond. Lower costs are achieved by saving time and equipment.

Application

Once students fully grasp and apply the knowledge, they are able to polish diamonds and avoid the surface anomalies associated with facets being too close to octahedral and hexahedral planes, thus resulting in a higher quality finish.

Characterization of Sapphires from Yogo, Montana

Andrea Cade (acade@eos.ubc.ca), Branko Deljanin, Lee Groat, and Marina Epelboym

Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, Canada; EGL Gem Lab, Vancouver; EGL USA, New York

Yogo sapphires from central Montana are well known for their natural blue color. They are found as tabular crystals in an Eocene ultramafic lamprophyre dike. The sapphires have been mined intermittently for more than 100 years, but little gemological data are available.

An examination of 12 faceted stones and 20 rough sapphires showed that they were predominantly blue to violet blue, with lesser quantities of purple and pink. Typically they were evenly colored and did not show color zoning. The sapphires were lightly included and often “eye-clean” and transparent. Fluid inclusions were uncommon. The most common mineral inclusions (predominantly identified visually using a gemological microscope) were rutile, sulfides, and garnet (identified by SEM); less commonly observed were biotite, calcite, and analcime. Rutile formed orange-to-brown, subhedral-to-euhedral crystals; no exsolved rutile needles were seen.

The refractive indices were nD = 1.669–1.770 and nE = 1.760–1.762, yielding a birefringence of 0.008–0.009. Specific gravity varied from 3.97 to 4.03. Pleochroism was observed as weak-to-medium blue and purple in the blue stones, and as medium-to-strong purple and brownish orange in the purple sapphires. The purple stones exhibited moderate red fluorescence to long-wave UV radiation, while the blue stones showed faint red or no fluorescence.

UV-Vis-NIR spectroscopy was performed on 22 samples using a Varian Cary 50 Scan spectrophotometer. The blue stones had sharp bands at 375, 387, and 450 nm attributed to Fe³⁺ absorption, and broad absorption maxima at 590 and 700 nm attributed to Fe²⁺-Ti⁴⁺ charge transfer. Narrow bands...
Golden rutile quartz deposits are located 400 km west of Nature’s Geometry, Laguna Beach, California. Brian Cook (brian@naturesgeometry.com)

Mangabeira, Novo Horizonte, Bahia, Brazil

“Bahia Gold” Golden Rutile Quartz, Serra da Mangabeira, Novo Horizonte, Bahia, Brazil

Brian Cook (brian@naturesgeometry.com)

Golden rutile quartz deposits are located 400 km west of Salvador, central Bahia, in the Serra da Mangabeira mountain range. The range (16 x 80 km) is oriented in a north-northwest direction, and composed mainly of peralkaline intermediate to felsic volcanic and volcaniclastic rocks of the Rio dos Remedios group (within the Espinhaço supergroup). The volcanism took place in the Middle Proterozoic (1.7–1.2 billion years ago), and was accompanied by pyroclastic and clastic sedimentation (Cordani and Blazekovic, 1970). The rocks have undergone very slight to phyllitic metamorphism, and are situated at the western scarp of the Chapada Diamantina. The Brasiliano thermo-tectonic cycle (Upper Proterozoic) is responsible for gold mineralization and for abundant quartz veining throughout the region. Rutile, smoky, and colorless quartz crystals are found in pockets and fissures of the quartz veins. The majority of production has been recovered from weathered rock down to 20 m below the surface.

Optical-grade quartz was collected from the surface of the Serra da Mangabeira in the 1940s. Smoky quartz and quartz with golden rutile needles were considered unsuitable for optical use and tossed aside. Eventually the rutile- and chloride quartz found its way to the stone centers of Governador Valadares and Teófilo Otoni in Minas Gerais. The broad-bladed golden rutile associated with hematite only occurs within this narrow volcanic range. Rarely, rutile oriented epitaxially on brilliant hexagonal hematite crystals produces “rutile stars.” It is thought that the golden-to-copper color of the rutile is related to its iron content.

Electric percussive hammers have increased quartz production in the area by allowing the deposits to be explored to greater depths. In the past, most mining was limited to hand working the weathered layers. Today, hand labor is reaching to 40 m depth with drifts to 25 m. Mechanization, along with higher demand since 2002, has resulted in a rush for the rutile- and chloride quartz. Up to 1,000 garimpeiros worked the deposits during the dry season (May–November) in 2005, but production figures are difficult to estimate. Thousands of kilograms of quartz may be produced monthly. The quality and size of rutile quartz varies widely and is very inconsistent. All grades are usable, since there is an established bead and carving grade market. The gem-grade material represents less than 10% of production, and is in strong demand. Production is likely to be more regulated in the future as federal and state agencies are beginning to monitor the area.

Statistical Study of the Performance and Predictive Value of Color Measurement Instruments for Cape-Colored Rough Diamonds

Tom Ceulemans (info@chromascope.be) and Eva Van Looveren

Chromascope, Antwerp, Belgium

The price of rough diamonds is determined by their potential to give polished stones of a certain quality. Besides evaluating the possible size, clarity, and cut of the finished goods, estimating the final color is one of the main problems for the trader. For polished diamonds, one can use master stones to evaluate cape color, but for rough diamonds this method cannot be used. The trader has to rely on his own experience and/or the use of color measurement devices currently available on the market. This study investigated how predictive these instruments are compared to visual inspection by an experienced diamond trader.

More than 300 cape-colored rough diamonds were examined. The stones had various origins, and showed UV fluorescence reactions that varied from inert to very strong. The diamonds had an average weight of 2.43 ct, and while some were makeables, most of them were sawables. All of them were type Ia with colors between D and M. The origin of the yellow cape color was the presence of N3 centers. This center is caused by the grouping of three nitrogen atoms and creates a zero-phonon line at 415.5 nm in the blue region of the visible spectrum.

The color of the stones was visually evaluated before and after cutting by experts, and by using two commercial color measurement instruments: the Yehuda color machine and the Chromascope cape color measurement device. A statistical evaluation was made between: (1) the visual and instrumental color grade estimations, and (2) the color grade results of the rough stones versus the corresponding polished results measured in the different ways. The results showed that no method gives a 100% guaranteed color estimation, but the success rate of the methods varied between 70% and 90% within a color grade error margin. The exact amount of error depended on the method used (visual, Yehuda, or Chromascope), the intensity of fluorescence, the diamond’s origin, and the homogeneity of the color.

“Bahia Gold” Golden Rutile Quartz, Serra da Mangabeira, Novo Horizonte, Bahia, Brazil

Golden rutile quartz deposits are located 400 km west of Salvador, central Bahia, in the Serra da Mangabeira mountain range. The range (16 x 80 km) is oriented in a north-northwest direction, and composed mainly of peralkaline intermediate to felsic volcanic and volcaniclastic rocks of the Rio dos Remedios group (within the Espinhaço supergroup). The volcanism took place in the Middle Proterozoic (1.7–1.2 billion years ago), and was accompanied by pyroclastic and clastic sedimentation (Cordani and Blazekovic, 1970). The rocks have undergone very slight to phyllitic metamorphism, and are situated at the western scarp of the Chapada Diamantina. The Brasiliano thermo-tectonic cycle (Upper Proterozoic) is responsible for gold mineralization and for abundant quartz veining throughout the region. Rutile, smoky, and colorless quartz crystals are found in pockets and fissures of the quartz veins. The majority of production has been recovered from weathered rock down to 20 m below the surface.

Optical-grade quartz was collected from the surface of the Serra da Mangabeira in the 1940s. Smoky quartz and quartz with golden rutile needles were considered unsuitable for optical use and tossed aside. Eventually the rutile- and chloride quartz found its way to the stone centers of Governador Valadares and Teófilo Otoni in Minas Gerais. The broad-bladed golden rutile associated with hematite only occurs within this narrow volcanic range. Rarely, rutile oriented epitaxially on brilliant hexagonal hematite crystals produces “rutile stars.” It is thought that the golden-to-copper color of the rutile is related to its iron content.

Electric percussive hammers have increased quartz production in the area by allowing the deposits to be explored to greater depths. In the past, most mining was limited to hand working the weathered layers. Today, hand labor is reaching to 40 m depth with drifts to 25 m. Mechanization, along with higher demand since 2002, has resulted in a rush for the rutile- and chloride quartz. Up to 1,000 garimpeiros worked the deposits during the dry season (May–November) in 2005, but production figures are difficult to estimate. Thousands of kilograms of quartz may be produced monthly. The quality and size of rutile quartz varies widely and is very inconsistent. All grades are usable, since there is an established bead and carving grade market. The gem-grade material represents less than 10% of production, and is in strong demand. Production is likely to be more regulated in the future as federal and state agencies are beginning to monitor the area.

Reference

Software for Gemstone Grading and Appraisal Valuation

Richard B. Drucker (rdrucker@gemguide.com)

Gemworld International Inc., Northbrook, Illinois

Since 1982, Gemworld International has published a comprehensive pricing guide for the gem and jewelry industry,
called *The Guide*. In 2000, Gemworld became owner of Guide Appraisal Software, further developing the methods by which appraisers could grade and price gemstones. Integrating the GIA colored stone grading system of hue, tone, and saturation, along with clarity and cut parameters, gem grading and pricing can be entirely produced electronically. By integrating known gemological formulas with researched pricing from *The Guide*, reasonably accurate wholesale valuations can be achieved. Appraiser input then can incorporate extrapolated results into meaningful retail appraisals.

GIA teaches colored stone and diamond evaluation methods. The diamond scale is universally accepted. Colored stones are more diverse and subjective in grading. For this reason, based on clarity, we differentiate between “types” of gems and grade them accordingly. An emerald is typically more included than an aquamarine, so GIA classifies emerald as a “type III” gem and aquamarine as a “type I” gem.

Appraisal software can easily classify all gems and adjust for clarity grading. By entering the hue, tone, and saturation based on the GIA system or the Gemwizzard system that is now being used by GIA Education, an overall color grade for the gem can be obtained. Finally, cut can be assessed using standard accepted proportion analysis. The GIA course uses the following cut grading categories: excellent, very good, good, fair, and poor. Combining the color, clarity, and cut by weighting each factor appropriately, the grade can then be applied to pricing grids.

Appraisers constantly face the challenge of accurately and consistently assessing gems for grading and valuing. Today, this can be achieved more reliably through technology-based software.

Demantoid from Iran

Garry Du Toit (gdutoit@agta-gtc.org)\(^1\), Wendi Mayerson\(^2\), Carolyn van der Boger\(^3\), Makhmout Douman\(^1\), Riccardo Belli\(^4\), John I. Koivula\(^4\), and Lore Kieft\(^5\)

\(^1\)AGTA Gemological Testing Center, New York; \(^2\)GIA Laboratory, New York; \(^3\)Arzawa Mineralogical Inc., New York; \(^4\)AGTA Gemological Testing Center, Carlsbad

Demantoid was first found in Iran in October 2001. The deposit is located in Kerman Province in southeast Iran at 1500 m above sea level. So far, approximately 120 kg of material has been mined, of which 5% was of gem quality. Cat’s-eye demantoid has been produced rarely (Douman and Dirlam, 2004). Besides the green demantoid variety, light yellow, orange, light orange, and brownish orange andradite are found at the same location. The garnets occur as clusters and as single well-formed crystals that are hosted by regionally metamorphosed asbestiform rocks within serpentine. Associated minerals include chlorite, apatite (large colorless crystals), and an attractive banded opaque material consisting of layers of apatite and calcite. Another associated mineral was identified as an amphibole, probably manganoriebeckite.

Twelve rough and 27 faceted demantoids were analyzed for this study. Sixteen samples were magnetic. The more transparent samples contained “fingerprints” along with straight and curved fibrous needles, consistent with those seen in Russian demantoids. These samples also revealed fractures along growth planes, which were also seen in the cat’s-eye samples examined earlier; such fractures have been observed repeatedly in the Russian material, and may distinguish them from the Russian material. The R.I. was above 1.81, and the S.G. was determined as 3.82 by the hydrostatic method. Both readings are consistent with the properties of demantoid from Russia. A desk-model spectroscope revealed a strong band at 443 nm and two bands at 622 and 640 nm, indicating Fe\(^{3+}\) and Cr\(^{3+}\) as the chromophores. These chromophores have also been found in demantoids from Pakistan (Milisenda et al., 2001). EDXRF spectroscopy showed significant chromium in several of the samples.

Fluorescence of Fancy-Cut Natural Diamonds

Sally Eaton-Magaña\(^1\), Jeffrey E. Post\(^2\), Roy A. Walters\(^3\), Peter J. Heaney\(^4\), and James E. Butler\(^5\)

\(^1\)Naval Research Laboratory, Washington, DC; \(^2\)Department of Mineral Sciences, Smithsonian Institution, Washington, DC; \(^3\)Ocean Optics Inc., Dunedin, Florida; \(^4\)Dept. of Geosciences, Pennsylvania State University, University Park

Gemological characterizations of diamonds commonly contain descriptions of fluorescence and phosphorescence. Typically, these include the color and relative intensity in response to short-wave (254 nm) and long-wave (365 nm) UV radiation. In addition, the corresponding spectra can be useful for indicating the presence of multiple centers that cannot be visually detected, the location of peak maxima, and peak shape.

The Aurora Butterfly, a collection of 240 loose colored diamonds (total weight of 166.94 ct), was on temporary display at the Smithsonian National Museum of Natural History from January to July 2005. It provided a unique opportunity to study the fluorescence reactions of a wide variety of colored diamonds. The diamonds were exposed to a UV source with wavelength varying from 250 to 425 nm, and the emission spectra were recorded. To avoid the risk of damaging these valuable gems, we could not perform some scientifically desirable experiments (e.g., low-temperature spectroscopy). An Ocean Optics deuterium lamp was used to excite the luminescence, and a fiber-optic assembly transmitted the UV radiation to the diamond and the emitted fluorescence from the sample. A USB 2000 spectrometer recorded the fluorescence and phosphorescence spectra. In the fluorescence measurements, a series of filters were used to block the visible light of the lamp.

The fluorescence peak locations and shapes were segregated into three categories, which corresponded well with the diamonds’ bodycolors. Fancy white, pink, and yellow diamonds...
showed two emission peaks centered at 450 and 490 nm that are possibly caused by the N3 defect or dislocations. Green and violet diamonds exhibited an asymmetric peak at 525 nm, likely due to H3 centers (see figure). Orange and “chameleon” diamonds showed a broad symmetric peak at 550 nm, and nitrogen platelets are tentatively assigned as the responsible center (Collins and Woods, 1982). Depending on the length of the “tail” of the emission band extending to 600 nm, the observed fluorescence could be either yellow or orange.

Since fluorescence is caused by certain defect centers in diamonds, different colored diamonds with similar fluorescence spectra likely have similar optically activated defects. Fluorescence spectroscopy could therefore be a useful technique for classifying colored diamonds.

Acknowledgments: We are grateful to Alan Bronstein for his time and for providing access to the Aurora collections, to Thomas Moses and Wuyi Wang of the GIA Laboratory in New York who loaned a DiamondView instrument for this project, and to Russell Feather, gem collection manager at the Smithsonian Institution, for his assistance.

REFERENCE

The Bragança “Diamond” Discovered?
Rui Galopim de Carvalho (ruigalopim@labgem.org)
Labgem, Sintra, Portugal

The famous Bragança diamond (internationally spelled “Braganza”) has been in the imagination of gem lovers since it was first mentioned in the early 19th century. Its reported 1,680 ct weight would make it second only to the Cullinan among the world’s largest rough gem diamonds. The Bragança, named after the dynastic name of King D. João VI (1767–1826) of the House of Bragança, is reportedly a large pale-colored pebble that was found in Brazil. The fascination with the mysterious Bragança is based on the fact that the existence of this diamond has never been proven.

Modern authors have stated that this stone, if it ever existed, was not a diamond but a topaz. This is consistent with the fact that in 19th century Brazil, colorless topaz was being produced for Portuguese jewelry manufacturing. The negligible difference in specific gravity between diamond and topaz, and the fact that both can show perfect cleavage planes, may have contributed to a possible misidentification.

The ongoing study of Portuguese Royal Treasuries at the Royal Palace of Ajuda has made it possible to access rare documents, gems, and jewelry. In addition to the fabulous gem-set jewelry, a few Brazilian mineral specimens were once in the collection of King D. João VI. Among those was a very light greenish blue rounded pebble weighing 342 grams that was referred to as an aquamarine in the 19th century and later confirmed as beryl in the 1950s (see figure). A simple conversion from grams to metric carats yields 1,710 ct (i.e., 342 g × 5 ct/g), which is quite close to the reported 1,680 ct of the Bragança. However, this carat value referred to old carats, and not the post-1907 universally accepted 1 ct = 200 mg = 1/5 g. The 1,710 ct value may easily be converted to 1,680 old carats, assuming a conversion factor of 1 ct = 203.5 mg, an admissible figure around Europe in the 19th century.

The fact that a round gem pebble exists in the collections documented in the King D. João VI inventory, and that the
description and weight are consistent with what is reported as the Bragança diamond, may not be enough to say that they are the same. The search for further documentation is continuing that may confirm or deny that the Bragança is neither a diamond or a topaz, but most probably an aquamarine in the actual inventory of the Portuguese Royal Treasuries.

The Evolution of the American Round Brilliant Diamond (aka American Cut), 1860–1955
Al Gilbertson (al.gilbertson@gia.edu)
GIA Research Department, Carlsbad, California

Today “American Cut” is synonymous with “Ideal Cut.” This is a product of education that primarily came from GIA and the American Gem Society. The terms are equated with proportions espoused by Marcel Tolkowsky in 1919. Mr. Tolkowsky was Belgian, not American, and the terms American Cut and Ideal Cut were in use before 1919 with almost identical proportions. The trade has largely accepted this simplification of history and is unaware of why the term American is associated with this cutting style. Tracing the history of the American Cut, a term incorrectly associated with Mr. Tolkowsky and proportions espoused by him, also parallels the search to value the diamond by its appearance. Quality of cutting is often judged by a diamond’s appearance. This history follows a quest for cutting the most attractive diamonds that began before Henry Morse, but was revitalized by him in the 1860s. Prior to his involvement, David Jeffries (1750) and John Mawe (1823), as well as others, talked about cutting diamonds for their beauty. Until the late 1800s, diamonds were primarily cut to maximize weight and not beauty.

Mr. Morse revolutionized diamond cutting by using mechanized bruting and measuring angles with the first angle gauge. Prior to this, hand bruting made it very slow and difficult to make a diamond uniformly round in shape, and most were squarish. Other American innovations that followed were mechanical dops and sawing. Early ray tracing and mathematical calculations for best cutting angles performed by Americans such as Henry Whitlock and Frank Wade corresponded to the angles in use for the American Cut. Merchandising of the American Cut (see figure) became easier as Americans boasted that they could do things as well as or better than Europeans. The patriotic timbre of the American view of their contributions to diamond cutting can be a bit strong, yet it is a vital contribution to the evolution of the American Cut.

The early proportions gave way to very slight changes proposed by Mr. Tolkowsky. Advocates of early proportions for the American Cut, including Mr. Wade, embraced Mr. Tolkowsky’s slightly different proportions. Mr. Wade’s efforts and GIA’s support (starting in 1931) of the American Cut’s proportions solidified its position in the trade. The final validation that placed the American Cut firmly as a diamond with beauty and value came with the changes in GIA course material in 1953, which evaluated cut and associated its evaluation with current market prices.

Funding for Gemological Research: Ideas and Case Studies
Lee A. Groat (lgroat@eos.ubc.ca)
Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, Canada

Research on gem materials and deposits ranges from basic to applied science, and has implications for a wide variety of topics from advanced materials to our understanding of geological processes. For example, gem deposits are rare because
the required geological conditions are exceptional, and thus are often worthy of scientific study. In turn, the more we know about gem deposits, the more successful we should be at finding new ones. The obvious model is diamonds and kimberlites, but surprisingly little is known about the origin of most colored stone deposits. This is especially important as traditional sources decline.

Of course, research costs money, for student stipends and salaries, instruments, analyses, transportation, journal page charges, conference fees, and a myriad of other expenses. Funding can come from a variety of sources, including governments and industry. Agencies such as the Natural Sciences and Engineering Research Council (NSERC) in Canada, and the National Science Foundation (NSF) in the United States, support research in mineralogy, materials science, and related fields through grants to individuals in academic institutions and museums in some cases. Proposals undergo a highly competitive peer-review process. NSERC has a number of Partnership Programs, including Collaborative Research and Development (CRD) grants, which support well-defined projects undertaken by university researchers and their private-sector partners. CRD awards cover up to half of the total eligible direct project costs, with the industrial partner(s) providing the balance in cash and in kind. Similar programs exist with granting agencies in other countries. Government geological surveys are another possible source of funding.

Mining companies may also support gem research, provided there is a clear plan with detailed budgets and timelines. It also helps to show a willingness to get one’s hands dirty in the field. Sometimes numerous meetings are necessary before a company will commit to funding a project. Funding can be both monetary and in-kind (transportation, accommodation, data, etc.). Companies need to understand the regulations that the researcher must adhere to in any university-industry partnership. One of the best ways to cooperate is to have the company fund a graduate student. This creates good public relations and there is the possibility that the student will become an employee upon graduation. A major labor shortage is developing in the geosciences, and such collaboration is one way for a company to build a relationship with a potential employee.

Integrating the Diamond Project Development Process
Karin O. Hoal (khoal@mines.edu)
Colorado School of Mines, Golden, Colorado

Diamond project development by producers affects the market because geologic source is tied to a geopolitical location, and mining methods may adversely affect sales. The diamond project development process refers to how diamond projects are developed to improve recovery, reduce environmental impact, and contribute to local communities (see table). The visibility of programs such as the Diamonds and Human Security Project (www.pacweb.org/e/images/stories/documents/sierraleone_e.pdf) the Diamond Development Initiative (www.casmsite.org/Documents/DDI_Accra_Oct05.pdf), and Diamonds for Development (www.diamondsfordevelopment.com) shows how project development affects producers through to retailers, as well as the public’s perception of goodwill accompanying any mining-related activity, however far removed (i.e., jewelry). Diamond project development is particularly important to mineral-rich African countries that rely on mining revenues for infrastructure and development.

Relationship between Texture and Crystallization Degree in Nephrite Jade from Hetian, Xinjiang, China
Mingyue He (hemy@cugb.edu.cn)
School of Gemmology, China University of Geosciences, Beijing

China is one of the most important countries of the world’s ancient civilizations, with a history of mining and using jade that extends for thousands of years. Nephrite is still the most important jade in Chinese culture. This study used petrographic microscopy and powder X-ray diffraction to study the relationship between texture and “crystallization degree” in nephrite from Hetian in Xinjiang Province. The crystallization degree, which is also referred to as crystallinity, is the degree of structural order in a solid (often represented by a fraction or percentage) and provides a measure of how likely atoms or molecules are arranged in a regular pattern (i.e., into a crystal).

Microscopic observation of the jade revealed a crystalloblastic texture. Based on the spatial relationships among the constituent grains, this crystalloblastic texture could be subdivided into the following seven types: felt-fiber intertexture, rimmed fiber, leaf fiber, broom, radial fiber, replacement relic, and replacement metasomatic (pseudomorph). The overall fabric of the jade could be classified as either blocky or schisose. The former is the most important and popular for gem material, while the latter is subject to fracturing along foliation and, thus, is not commercially significant.

X-ray diffraction (XRD) analysis indicated that the jade is composed fundamentally of tremolite. In general, the XRD pattern for Ziyu material (an alluvial deposit) was consistent with that of tremolite, while there were weak diffraction peaks for accessory minerals such as serpentine in Shanliao material (a primary deposit). The higher-angle diffraction peaks indicate that the material is well crystallized. The indices of crystallization (calculated from the XRD patterns) of tremolite in Hetian jade were lower than that of standard coarse-grained tremolite. Within the Hetian jades, the indices of crystallization were relatively higher for the majority of Shanliao samples (which have a coarser grain size), which showed strong, sharp, and rather symmetric diffraction peaks. The indices of crystallization were lower for the Ziyu jade and a small amount of the Shanliao jade (in which the grain size was relatively fine), as shown by diffraction peaks that were weak, dispersed, and less symmetric. The crystallization degree was therefore consistent with the textural features seen with the microscope.
At the Colorado School of Mines, we are establishing the first interdepartmental geometallurgical research center with state-of-the-art QemScan instrumentation, that will be used for new applications in diamonds and gems (e.g., rapid indicator mineral assessment, stone source identification techniques, materials characterization) among other mineral studies. In association with the USGS, research in Liberia illustrates how diamond project development is enhanced by integrating geology, resource assessment, extraction and characterization techniques, and marketing initiatives in a revitalizing industry with a new government. Past export figures for Liberia from the 1950s to 1980s, including trafficked stones, averaged about 300,000–600,000 carats/year, declining to 3,700 carats in 2001 (Greenhalgh, 1985; Coakley, 2004). While production is on hold until UN sanctions are lifted (perhaps by December 2006), exploration efforts and some artisanal operations continue and there is considerable potential for new deposit discoveries.

Liberian geologic and mineral assessment includes identifying (1) the boundaries of the West African Craton, (2) potential lithospheric delamination by the Pan African orogeny and subsequent diabase dike swarms, (3) structural controls, (4) potential sites conducive to kimberlite emplacement, (5) erosional and weathering profiles for alluvials, (6) secondary reworking sites, and (7) the potential for paleodrainage and marine deposits. These geologic factors help determine elements of the project development process, such as extraction techniques, processing methods for difficult materials, laboratory facility methods, geometallurgical characterization, and a mining plan. Community development follows, through geological survey assistance, certification programs, GPS-database systems of mining sites and recovery values, and training-the-trainer programs. Recovery and sales of rough diamonds through cooperatives with government-appointed monitors are geared toward a sustainable system that benefits sellers with the best prices, brings income to communities, and develops branding initiatives for conflict-free, high-quality Liberian stones.

REFERENCE

Melo “Pearls” from Myanmar

Han Htun1, William Larson2, and Jo Ellen Cole (jocole2@cox.net)3

1Stalwart Gem Laboratory, Yangon, Myanmar; 2Pala International, Fallbrook, California; 3Cole Appraisal Services, Carlsbad, California

Non-nacreous “pearls” produced by Melo volutes are found along coastal areas of Myanmar, as well as Indonesia, Thailand, Cambodia, and Vietnam. Occurring in a range of colors, the most prized is an intense orange hue. In Myanmar, the volutes are called *Olun kaya* (coconut shell), and the orange pearls derived from them are called *Olun pale*. The volutes are fished at a depth of 30–50 m from a muddy sea bottom. A non-nacreous pearl forms when an irritant enters the mollusk’s mantle, and the size and color of the Melo pearl is determined by the size and lip color of the parent mollusk.

In addition to a strong orange coloration, the best-quality Melo pearls exhibit an attractive silky flame-like structure and a porcelaneous luster. The microscopic “flames” are actually thin lamellar-like structures composed of intercalated calcite and aragonite crystals that display different optical behaviors. The lamellae are almost parallel to one another, and when oriented perpendicular to the axis of the pearl they produce a pseudo-chatoyancy effect. Some Melo pearls show a regular pattern of parallel elongated striations that impart a silky sheen.

Melo pearls are generally round, but a near-spherical or true round shape is very rare. They may vary from a few millimeters to more than 32 mm in diameter. Fluorescence is
variable, mostly chalky blue or orange. The refractive index typically ranges from 1.51 to 1.64, with lower values ranging from 1.50 to 1.53 and the higher values ranging from 1.65 to 1.67. Variations could be greater if a larger sample group were studied. With exposure to the UV radiation in sunlight, both the Melo shells and their pearls are known to fade in color.

The majority of Burmese Melo pearls are fished from the Mergui Archipelago and traded in the town of Myeik (or Mergui). The color, shape, size, and quality of the flame structure are considered in determining their price. Imitation Melo pearls have been created by polishing round pieces cut from the thickest portion of the volutes shell. They display a different flame structure pattern that consists of concentric radiating flames and parallel-banded layers displaying the pseudo-chatoyancy effect.

Melo pearls are among the rarest gems in the world. Myanmar coastal areas offer an ideal environment for the habitat of Melo gastropods, and it is certain that many more of these exotic orange pearls will be retrieved from Myanmar waters in the future.

Global Rough Diamond Production from 1870 to 2005
A. J. A. (Bram) Jame (archonexpl@iinet.net.au)
Archon Exploration Pty. Ltd., Perth, Western Australia

Data for annual global rough diamond production from 1870 to 2005 were compiled and analyzed. Assembling these data was an arduous and difficult task because the figures for several countries may vary as much as 10% between various publications. To maintain consistency, production figures were taken from sources that are believed to be reliable and were published in the U.S. These sources include Minerals Yearbook (published by the U.S. Bureau of Mines from 1934 to 1966 and thereafter by the U.S. Geological Survey). For the period from 1870 to 1934, the “Gemstones and Precious Stones” chapters in The Mineral Industry and Mineral Resources of the United States, as well as Wagner (1914), were consulted.

Global production, as indicated by carat weight, was divided into 10 major source countries or regions (see figure and a data table in the G&G Data Depository at http://www.gia.edu/gemsandgemology). The data show a spectacular increase in 1985 when the Argyle mine in Australia began production. Declines in South African production were caused by World War I in 1915, the sudden influx of diamond jewelry put on the market by Russian émigrés in 1921–22, and the global depression in the early 1930s. Starting in the 1930s, production from West Africa and the Congo increased greatly and peaked in the period of 1955–1975. Russian production began in 1960 and increased starting in 1985, during the same time as production in Botswana (beginning in 1971) and Australia (beginning in 1983) began to rise significantly. The latest entry is Canada, which began production in 1998.

Data and statistics for 27 diamond-producing countries have been tabulated (again, see table in the G&G Data Depository). South Africa ranks first in value (although fourth in volume), mainly because of its long history in production; Botswana ranks second in value and fifth in volume, although its production history dates only from 1970; Russia is third in value and third in volume; while Namibia, although ranking only eighth in volume, is fourth in value because of the high value of the diamonds from its beach deposits. Congo-Zaire is first in volume, but because of the low diamond value it ranks fifth in value, and likewise Australia ranks second in volume but is only eighth in value. The total global production up to 2005 is estimated at 4.5 billion carats, valued at $315 billion with an average value per carat of $70.

REFERENCE

Chromaquamarine

Arunas Kleismantas (arunas.kleismantas@gf.vu.lt)
Geology and Mineralogy Dept., Vilnius University, Lithuania

The goals of this study were to create a method to classify gem beryl varieties and identify indications of heated beryls. In addition, based on a study of material from Zambia and Australia, a new beryl variety is proposed.

With increasing heating temperature, the color of beryl containing Fe$^{3+}$ changes as follows: yellowish brown \rightarrow yellow \rightarrow slightly yellow \rightarrow slightly green \rightarrow colorless with slightly green-blue \rightarrow slightly blue. This observed sequence was calculated theoretically by using Goethe’s Color Circle and Maxwell’s Triangle (Agoston, 1982). When transferred to the CIE (1931) color space diagram, the color spectra for various beryl varieties show a consecutive sequence: golden beryl \rightarrow heliodor \rightarrow green beryl \rightarrow goshenite \rightarrow aquamarine. Golden beryl and heliodor clearly distinguish themselves as separate varieties in this CIE (1931) diagram, and their designation should be based on their hue—yellow for golden beryl, and greenish yellow for heliodor.

A new proposed variety—chromaquamarine—can be distinguished on this same color diagram. Chemical analysis with a JXA-50A scanning electron microscope of five chromaquamarines (four from Kafubu, Zambia, and one from Poona, Australia) and 26 emeralds from different localities showed that the chemical composition of chromaquamarine is close to that of emerald, but with a considerably larger amount of Fe$^{3+}$ (0.081–0.146%) than either Cr$^{3+}$ (0.081–0.146%) or V$^{3+}$ (<0.018%). The hue of chromaquamarine varies from greenish blue to bluish green. However, because of the presence of chromium, this material cannot be considered to belong to the iron-bearing beryls, and must be closer to emerald.

Having made use of the Goethe Color Circle, a new diagram—a “Beryl Color Circle”—has been devised to reflect the diversity of beryl varieties (see figure), and shows the variety of stones with similar hues.

From the absorption spectra of heated beryl, it was found that after heating, beryl possesses a “color memory” because the color centers remain after the heat treatment. This could help indicate whether or not a beryl has been heated.

REFERENCE

Gemological Properties of Colorless Hyalophane from Busovaca, Bosnia-Herzegovina

Goran Kniewald (kniewald@irb.hr)1 and Vladimir Bermane2

1Center for Marine and Environmental Research, Rudjer Boskovic Institute, Zagreb, Croatia; 2Institute of Mineralogy and Petrology, University of Zagreb, Croatia

Hyalophane has the formula K,Ba[Al(Al,Si)Si$_2$O$_8$], and is a mineral belonging to the solid-solution series of K-Ba feldspars with the end-members orthoclase K[Al$_2$Si$_3$O$_8$] and celsian Ba[Al$_2$Si$_3$O$_8$]. Gem-quality hyalophane has been found in the Busovaca area in central Bosnia-Herzegovina, some 50 km northwest of Sarajevo. It occurs in stratabound hydrothermal veins associated with Paleozoic chlorite and amphibolite schists (Bermane et al., 1999). This occurrence has been described previously in the literature, and data on crystal morphology, chemistry, and optical properties have been published (Baric, 1972; Bank and Kniewald, 1985). A colorless, transparent cut hyalophane was shown to be biaxial with refractive indices of $n_x = 1.541$, $n_y = 1.546$, and $n_z = 1.549$, giving a birefringence of 0.008; the hydrostatic specific gravity was 2.89 (Bank and Kniewald, 1985). The identity of the studied hyalophane was confirmed with powder X-ray diffraction.

Before the onset of war in Bosnia during the 1990s, some additional crystals of gem-quality hyalophane were found and several stones ranging from 0.5 to 1.5 ct were cut from this material. Attempting to identify hyalophane with standard gemological tables is difficult, since this mineral is not mentioned in the common gemological literature. To our knowledge, this is the only known occurrence of gem-quality hyalophane.

REFERENCES

Some Dissolution Features Observed in Natural Diamonds
Taijin Lu (tlu@gia.edu)1, Mary L. Johnson2, and James E. Shigley3
1GIA Research, Carlsbad; 2Mary Johnson Consulting, San Diego, California

Most natural diamonds have been subjected to at least one dissolution process since their nucleation and growth in the mantle (Orlov, 1977). This dissolution not only modifies the external morphology, but it also leaves various etch figures on the surfaces of the crystal. Besides the best-known feature—trigons (small triangular depressions seen on some octahedral crystal faces)—many other dissolution features can be observed. In this presentation, some less common etch figures are discussed: etch channels (Lu et al., 2001), etch figures at twin boundaries, discoid sculptures (Wang et al., 2004), and nested etch patterns.

Etch channels of various forms, from parallel lines to irregular ribbon- or worm-like shapes, can be seen in both type I and type II diamonds from various localities (see, e.g., Johnson et al., 1998). These channels have surface openings with rhombic or modified rhombic shapes and, internally, they often terminate at mineral inclusions. They appear to originate either from the outcrop of a bundle of dislocations perpendicular to {111} planes, or along dislocation dipoles elongated along the <110> direction in the diamond. The final internal morphology of the channels varies depending on the interaction with other defects during the dissolution processes (Lu et al., 2001).

Etch figures associated with twin boundaries (contact twins) usually display high symmetry (such as hexagonal or rhombic forms). Most etch figures can be removed by polishing, but they will appear at the same locations if the faceted stone is etched again because twin boundaries penetrate deep inside most diamonds. Dislocations at the kinks of zigzag-like twin boundaries are preferential sites for the formation of these etch figures during selective dissolution processes (Lu et al., 2001).

Discoid sculptures and nest-like etch patterns on diamond surfaces are much less common than the etch channels and etch figures associated with the twin boundaries. “Crater-like” depressions were seen randomly scattered on the surface of a 2.70 ct diamond crystal with a modified dodecahedral/octahedral form, and were probably due to selective dissolution under specific chemical conditions (Wang et al., 2004). An etch pattern with triangular nested steps was seen on an octagonal face of a thick plate-like diamond crystal from Argyle, Australia (see figure). This pattern may have been caused by a selective and slow layer-by-layer dissolution of a fractured surface.

The Role of Brillianteering Variations in the GIA Cut Grading System
Ilene Reinitz (ireinitz@gia.edu)1, Al Gilbertson2, and Ronnie Geurts3
1GIA Laboratory, New York; 2GIA Research, Carlsbad; 3GIA Antwerp, Belgium

The GIA cut grading system for round brilliant diamonds includes seven components addressing appearance, craftsmanship, and design. We related these components to the average proportions, descriptions of girdle thickness and culet size, and the polish and symmetry grades provided in the GIA Diamond Grading and Dossier reports. The grading system also includes evaluation of cutting variations applied during the brillianteering process—purposeful, symmetric displacement of the upper and/or lower girdle facets, known in the trade as painting and digging out (see figure).

Because these facets (often called “halves” by diamond cutters) cover about 40% of the surface of the round brilliant, and are part of so many light paths through it, these brillianteering techniques can affect the overall appearance of a round brilliant as much as or more than variations in the average proportions. In some cases, painting (movement of the halves toward the adjacent bezel or main) or digging out (movement of the halves toward each other) is done specifically to manipulate the face-up pattern; in other cases, these techniques allow greater weight recovery, or ease the removal of inclusions. The average proportions are fully established before the upper and lower halves are polished, so they cannot describe the extent to which either brillianteering technique was applied. Painting and digging out can be assessed in several ways, but the most direct visual estimate is made from the appearance of the diamond's...
girdle in profile view. Asymmetries such as uneven crown height or wavy girdle can interfere with the assessment of brillianteering variations.

Like other appearance factors, we determined the impact of painting and digging out on overall appearance by analyzing human observations of round brilliant diamonds of common proportions, with and without various degrees of brillianteering variations. The many possibilities available to the diamond cutter for varying the half facets lead to a wide variety of visual effects. Brillianteering variations can reduce contrast, or increase it. They can enhance fire, sometimes at the expense of brightness, or they can enhance brightness, sometimes at the expense of fire. In general, moderate-to-significant brillianteering variations create differences in face-up appearance that may appeal to the taste of some diamond consumers, but severe variations cause defects in appearance that merit a low cut grade. Such variations are indicated with a comment on the grading report when it is the grade-setting factor. In conjunction with the overall grade, this comment alerts the report holder to look at the diamond’s appearance and to make a personal judgment.

Preliminary Observations of a New Polishing Process for Colored Gems
Peter Richardson (peter@aurumplus.com)1, Tom Stout2, Carley McGee-Boehm3, William Lanon4, and Edward Boehm5

1Aurum Plus, San Bernardino, California; 2Veeco Instruments Inc., Tucson, Arizona; 3JOEB Enterprises, Solana Beach, California; 4Pala International, Fallbrook, California

A new process for polishing colored gems, diamonds, and finished jewelry—called PolishPlus—was introduced in 2003. Colored stones such as opal, amethyst, corundum, emerald, spinel, tanzanite, and tourmaline appear to show improvement in transparency, luster, brilliance, or phenomenon. Pearls, especially older worn pieces, show significant improvement in luster and surface quality. Mounted pieces of jewelry may be polished using this process, improving the appearance of the gems as well as providing brighter and smoother metal surfaces. This could prove useful to the antique and estate jewelry market, where removing a gemstone from its original setting for repolishing can sometimes compromise the value of the entire piece of jewelry.

The polishing process involves the use of various patent-pending and proprietary polishing mediums that employ special methods designed specifically for polishing gems and jewelry. PolishPlus employs a dry finishing medium ("MiracleMedia"), and special vibratory finishing machines with oscillatory motions of over 6,000 cycles per minute. The object being polished is bombarded from multiple directions with successive grits to sizes below 0.02 microns (which is about 1,000 times finer than the conventional industry standard grit). The polishing process can take from several hours to several days, depending on the material being polished. There are virtually no limitations on the size or shape of material that can be polished.

In an effort to scientifically substantiate the improvements in appearance, the authors have tested and photographed...
numerous gem samples before and after the polishing. The experiments seem to indicate that the optical improvements are the result of a higher degree of polish than has previously been achieved on these gemstones. This results in more light entering the gem due to less hindrance from surface anomalies, and therefore a more beautiful gemstone. Using the Wyko optical profiling systems by Veeco Metrology Group, we measured the topography of the gemstones and metal surfaces at extremely high magnification. The instrument uses optical phase shifting and white light vertical scanning interferometry to produce detailed subnanometer measurements that are displayed on a computer monitor as three-dimensional color images. Samples with apparent visual improvements resulting from the PolishPlus process had improved polish to subangstrom levels.

Identification of Dyed Chrysocolla Chalcedony
Andy Shen (andy.shen@gia.edu), Eric Fritz, Dino DeGhionno, and Shane McClure
GIA Laboratory, Carlsbad

Chrysocolla chalcedony (marketed as "gem silica") is probably the most valuable variety of chalcedony. The material is colored by minute chrysocolla inclusions and usually ranges from an intense-to-vivid blue to blue-green. The diaphaneity of gem-grade material is semitransparent to semitranslucent. The color of this type of chalcedony is easily enhanced by soaking in water (Koivula et al., 1992; Johnson and Koivula, 1996). Furthermore, because colorless or milky chalcedony absorbs aqueous solutions readily, it can easily be dyed with inorganic cobalt or copper salts to simulate chrysocolla chalcedony.

Chrysocolla is a hydrous copper silicate mineral that forms from the weathering of copper minerals. Therefore, visible inclusions of chrysocolla together with other copper minerals (such as malachite) within the chalcedony provide the best evidence of natural origin. Visible absorption spectra and mineralogical associations are the main gemological criteria. If a chalcedony is dyed with cobalt, characteristic absorption lines (triplet at 620, 657, and 690 nm) may be seen with a handheld spectroscope. However, for samples dyed by a copper solution with no clear mineral inclusions, we found that UV-Vis-NIR spectroscopy is necessary to identify them.

We recorded UV-Vis-NIR spectra of 29 untreated and 10 treated samples. A typical UV-Vis-NIR absorption spectrum (250–2500 nm) of natural chrysocolla chalcedony shows four distinct broad bands. A broad band covering 527–1176 nm (centered at ~721 nm) is due to the crystal-field effect of the Cu$^{2+}$ ion in the chrysocolla lattice (Burns, 1993, p. 238). A band around 1300–1700 nm correlates to total OH content. The molecular water content is represented by a band at 1800–2100 nm. A band at 2128–2355 nm represents structurally bonded OH (Graetsch, 1994; Shen and Keppler, 1995). Furthermore, the concentrations associated with the four bands can be calculated if the path length and the absorption coefficient are known. We employed a simpler approach by looking at the ratio of the integrated areas under the Cu$^{2+}$ (527–1176 nm) band and the structurally bonded OH (2128–2355 nm) band. All of the chalcedony colored by chrysocolla had a ratio between 7 and 44, whereas all of the samples dyed with copper solutions had a ratio from 0.5 to 3.

To optimize diamond cut proportions, we should consider three factors: illumination, the diamond, and human perception. These factors can be approximated by using computer modeling. During color grading, a diamond is compared against color master-stones in standard illumination and viewing conditions. However, diamonds are shown, sold, or worn in many different environments. Even if two of the above factors are fixed, a change in the third condition can dramatically change the overall perception of a diamond.

To study variations in a stone's appearance, we photographed yellow cubic zirconia in various faceted shapes using a symmetric ring-shaped, daylight-equivalent lamp and other illumination conditions. The same stones and lighting conditions were then modeled in DiamCalc software, and their three-dimensional models were obtained using a non-contact measuring device (Helium Polish scanner developed by OctoNus). The three-dimensional models contain information about each cut stone's shape, facet arrangement, real symmetry features, slope (angle), and index (azimuth) angles of each facet.

The DiamCalc software can closely model the appearance of polished colored stones in any lighting condition, and thus it is possible to model the appearance of any colored diamond in any cut, as represented in the figure. Even though these results were obtained for cubic zirconia, diamond appearance can be modeled with this software by using the appropriate refractive index in the calculations.

It is advisable to use several controlled lighting conditions when designing and optimizing new cuts because of diamond's variability in appearance under different lighting conditions. Diamond proportions with an inconsistent appearance under different types of lighting can be avoided. A good diamond cut should have an attractive appearance under all lighting conditions. One can use computer models of several common illuminations to predict a stone's appearance before it is cut.
Comparative Investigation of Diamonds from Various Pipes in the Malaya-Botuobiya and Daldyn-Alakit Areas (Siberia)

Yulia P. Solodova (gigia@rol.ru)1, Elena A. Sedova1, Georgiy G. Samosorov2, and Konstantin K. Kurbatov3

1GIA Russia, Moscow; 2Russian State Geological Prospecting University, Moscow; 3ALROSA Diamond Sorting Center, Mirny, Sakha, Yakutia, Russia

A selection of at least 2,000 diamond crystals from the Siberian craton, representing various size-weight groups, was examined from the following pipes: Dachnaya and Internationalaya in the Malaya-Botuobiya (M-B) area, and Udachnaya, Aikhal, and Jubileynaya in the Daldyn-Alakit (D-A) area. The mineralogical features and physical properties of diamonds within each area were quite similar, and they showed less variation than a comparison of diamonds from pipes from different areas.

According to Orlov’s (1984) mineralogical classification, category I diamonds were prevalent (up to 98.8%) in the M-B area, and those remaining were category VIII. About two-thirds of the category I diamonds consisted of well-formed, flat-faced octahedrons. The proportion of category I diamonds was somewhat less (71–96%) from the D-A area. The balance of those diamonds were from a number of other categories (II, III, IV, V, VIII), consisting of flat-faced crystals, rounded crystals, and intermediate forms.

Category I diamonds from the M-B area were yellow and brown. Purple diamonds were also noted from both of those pipes. In crystals from the D-A area, browns dominated over yellows, or these colors were present in approximately equal amounts. Also present were gray diamonds and diamonds with a green skin. Intensely colored diamonds were rare from both areas.

Blue or pink fluorescence to long-wave UV radiation was noted in diamonds from both areas. Some diamonds from the D-A area showed yellow or green fluorescence.

IR absorption spectra showed that diamonds from the M-B area contained nitrogen, mostly as A centers. In D-A area diamonds from Udachnaya, the occurrence of nitrogen as B2 centers was higher than in those from the other pipes. Differences in B1 and H centers between diamonds from the two areas were not significant.

Diamonds from some of the pipes were studied using electron paramagnetic resonance (in collaboration with the Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences, Moscow). Paramagnetic centers containing Ni were found in diamonds from Jubileynaya, M2 centers were recorded in those from Internationalaya, and N1 centers were found in diamonds from Dachnaya.

Raman spectroscopy (in collaboration with the Institute of Element Organic Synthesis, Moscow) demonstrated that the average full width at half maximum (FWHM) values of the diamond Raman lines ranged from 2.4 to 3.4 cm⁻¹.
“Keshi” cultured pearls are observed in a variety of sizes, shapes, and colors.

In octahedral and dodecahedral crystals, the Raman FWHM was $2.4–3.0 \text{ cm}^{-1}$, and for the cuboid diamonds it was $3.2–4.0 \text{ cm}^{-1}$. Brown and gray diamonds had greater FWHM values than colorless and slightly yellow ones.

Reference

The “Keshi” Pearl Issue

Nick Sturman (nick@commerce.gov.bh) and Ali Al-Attawi

Directorate of Precious Metals and Gemstone Testing, Ministry of Industry and Commerce, Manama, Kingdom of Bahrain

The word *Keshi* has traditionally been used to describe small natural saltwater pearls (“seed” pearls) as well as similarly sized pearls that resulted as a byproduct of the Japanese cultured pearl industry. Nowadays, the term is predominantly used to describe cultured pearls with sizes well above those that would be considered seed-like. Hence, *Keshi* is now used generically to describe any pearl byproduct without a bead nucleus that is produced by the culturing process (e.g., see figure), regardless of the ocean in which the pearl farm is located.

The contentious aspect of Keshi cultured pearls revolves around the following question: Can gemological laboratories differentiate between all Keshi cultured pearls and natural pearls? In our opinion and experience, the answer to this question is no. Some Keshi cultured pearls are instantly recognizable by their overall visual appearance, and their cultured origin can be further validated by their internal structural features, as revealed by X-radiography. In other cases, laboratories are faced with an identification issue that may be either straightforward (i.e., the X-radiographic structures are quite distinct, classifying them as tissue-nucleated cultured pearls) or difficult (i.e., they exhibit natural-appearing structures).

Quantity testing of Keshi cultured pearls (i.e., in rows, necklaces, or parcels) may be thought of as less complicated because the test results are based on those samples that show the most evident structures. However, this is not always true, and we often have to issue mixture, majority/minority, or even natural reports on parcels of what appear to be Keshi cultured pearls. When individual pearls are submitted (i.e., for a full test as opposed to batch testing), the situation may be trickier since only the structure of a single sample, and not a group of pearls, is available to the gemologist. If the structure appears natural by X-radiography, then a natural report can be issued. In our experience, individual pearls with internal structures that are undoubtedly natural will pass as such in most, if not all, laboratories.

We do not have a solution to the differences in opinion that exist in the trade regarding what constitutes a “Keshi pearl,” and believe that a good deal of research still needs to be carried out on the subject.

A System to Describe the Face-up Color Appearance of White and Off-white Polished Diamonds

Thomas E. Tashey Jr. (ttashey@shglobal.net)1,2 and Myriam C. Tashey2

1ID Gemological Laboratory, Ramat Gan, Israel; 2Professional Gem Sciences, Chicago, Illinois

The traditional color grading of polished diamonds in the D-to-Z range is performed by observing them table-down in a standardized viewing environment, and comparing them to master stones of known bodycolor, also in the table-down position. Observing the diamonds table-down facilitates discerning subtle differences in the amount of color or of shades or tonal differences between them. There is generally a good correlation between the bodycolor observed table-down and the face-up color appearance of similarly sized and proportioned round brilliants. However, fancy-cut diamonds can show significantly more color face-up than round brilliants of the same color grade. Conversely, diamonds with strong blue fluorescence can appear to have less color face-up than non-fluorescent stones of the same color grade.

We propose a system to describe and classify the face-up color appearance of colorless and near-colorless polished diamonds. Face-up color appearance standards can be made from certain master comparison diamonds, and the color of polished diamonds can then be compared face-up to these standards. These standards should be nonfluorescent, very well made, round brilliant-cut diamonds that range from 6.0 to 7.0 mm in diameter. The colors of these master diamonds should be G, J, L, N, S, and W. The stones should be slowly rocked (tilted back and forth through an angle of ±30˚ from the table normal) while placed next to one another for comparison. Using this technique for fancy-cut diamonds, it should be noted that more yellow color will be observed in the table area than in their outer crown facets. Conversely, the round brilliants will show the most yellow color in their crown facets outside of the table area as they are rocked back and forth.

To describe color, we propose the standardized descriptions of Top White, White, Near White, Yellowish White,
Pale Yellow, and Very Light Yellow, as well as additional classifications for the fancy color range (see figure). This proposed system is based on standardized color nomenclature, and is also supported by Munsell color system standards.

Diamonds that have moderate or stronger blue UV luminescence should first be observed table-down with a UV filter to screen out the fluorescence. However, the face-up color appearance of these fluorescent diamonds should be observed without the UV filter, and any color enhancement due to the fluorescence should be allowed to upgrade their face-up appearance classification.

These standardized descriptions are suggested in addition to the traditional color grade listed on a diamond report.

Digital Color Communication for Gemstones, with an Exploration of Applications within Our Industry
Thom Underwood (thomu@cox.net), Menahem Sevdermish, and Liat Sevdermish
1Quantum Leap, San Diego, California; 2Advanced Quality A.C.C. Ltd., Ramat Gan, Israel

The continuing maturation of the computer graphic interface has provided an environment suitable for effective gemstone color display and communication. Gemwizard is a suite of digital tools providing a variety of solutions for gem color communication for students, gemologists, gemstone brokers, appraisers, and web-based jewelry companies.

Current applications include the Gemesquare, one tool within the Gemwizard suite that is used by GIA for the instruction of gemstone color science in their classrooms.

Quantum Leap Appraisal Software has seamlessly integrated with Gemesquare to virtually communicate gemstone color in the jewelry appraisal process. The Stuller Company uses aspects of Gemwizard to improve communications within their gemstone ordering process.

Empirical measurement of gemstone color has proven elusive and impractical, as well as too expensive for common gem industry applications such as appraising and gem brokerage. Consequently, previous and currently available systems such as Gem Dialogue, GemSet, Color Scan, and the ColorMaster have relied on the human eye to compare the color(s) in a gemstone with the similar color(s) presented by the given system. Gemesquare falls in this “comparative” category, but it uses a flat-screen LCD computer monitor to present the color palette to the user. While each color system may analyze and present the color palette differently, the common thread is the attempt to consistently “place” a gemstone within a reasonably small portion of color space, thereby effectively communicating the gemstone’s color.

The digital environment used by Gemesquare has many positive aspects as well as some weaknesses. Its strengths reside in its digital roots, making it convenient to calibrate the virtual color space, easy to integrate into commercial and professional applications, and simple to propagate the system and results to a potentially universal user base. Its weaknesses also reside in its digital roots, raising questions of monitor calibration (both comparative and over time), a monitor’s inability to display very highly saturated colors, and questions regarding gem-viewing environments.

This chart shows the boundaries of the proposed color nomenclature on the D-to-Z scale and continuing into the fancy-color range; it applies for round brilliant-cut diamonds that are well made, 6.0–7.0 mm, and nonfluorescent. © Professional Gem Sciences 2006.
Photographing Phenomenal Gemstones
Robert Weldon (robert.weldon@gia.edu)
Richard T. Liddicoat Gemological Library & Information Center, GIA, Carlsbad

Phenomenal gemstones pose unique challenges to gemologists. Chief among them is how to best light the gems to reveal their optical characteristics, such as chatoyancy, asterism, play-of-color, color change, iridescence (see figure), schiller effect, and labradorescence. Lighting the gem for photography parallels the actions taken by a gemologist to observe such phenomena.

Lighting is the most important aspect to consider when photographing phenomenal gems. With chatoyancy or asterism, the direction and intensity of the light source are crucial. Whether a light source is diffuse, or pinpointed and direct, also plays a role. A traditional three-point lighting system (in which gems are back- and side-lit) is not used for chatoyant or asteriated gems because the various light sources may cause phenomenal effects to appear in unintended parts of the gem. Even if side lighting is diffused, distracting reflections appear in cabochon-cut gemstones. Photographers prefer to rely on a single light source, aimed perpendicular to the convex top of the cabochon, to bring out asterism and chatoyancy.

A light source’s color temperature is also important to render the correct color balance in photographs of gems and minerals. With digital photography, this adjustment can be corrected “in-camera.” Color-change phenomena in gems are observed under specific lighting color temperatures. However, in both digital and film photography, capturing accurate color change under various lighting conditions is not as straightforward; in many cases “corrections” are made with direct observation and photo-editing software.

Not all phenomenal gemstones of a particular type require similar lighting. To observe play-of-color in opal, direct, pinpoint lighting is often thought to be ideal, but that is not always true. Some opals are successfully lit, and their play-of-color displayed, with diffused light—or with a combination of direct and diffused light.

Phenomenal feldspars, such as moonstone, sunstone and labradorite, require diffused illumination to exhibit the phenomena. In moonstones, diffused lighting, as well as the physical orientation of the gem, allows the photographer to judge where the gem’s adularescence appears strongest (i.e., its photogenic angle). Adularescence is most obvious when a moonstone is photographed against a dark background. Copper platelet inclusions in American sunstones, which cause the schiller effect, may reflect too strongly with direct lighting, creating hot spots. In such cases, the gem may need to be tilted, or the camera angle changed, so that a plane of inclusions is softly illuminated. The goal is to illuminate the inclusions to show moderate-to-strong relief and sharp detail.

Recent Trends in World Gem Production
Thomas R. Yager (tyager@usgs.gov)
U.S. Geological Survey (USGS), Reston, Virginia

Estimates of world colored gemstone production are inherently difficult because of the fragmentary nature of the industry, the lack of governmental oversight in many countries where colored gemstones are mined, and the wide variation in quality of the production. Therefore, global production figures for colored gemstones have not been published previously by the USGS, although data are available for some individual countries.

Based on government data, company reports, and a review of the colored gemstone mining literature, the overall emerald, ruby, sapphire, and tanzanite production from 1995 to 2004 have been estimated. Amethyst and garnet production figures for selected countries also have been compiled.

Global emerald production increased from about 3,600 kg in 1995 to 5,900 kg in 2004; output rose in Colombia, Brazil, Madagascar, and Zambia. Colombia’s status as the world’s leading emerald producer was challenged by Brazil and Zambia. Brazil’s emerald production increased sharply because of the development of large-scale mechanized mines.

World ruby production is also estimated to have increased, from about 4,400 kg in 1995 to 9,100 kg in 2004. This increase was primarily attributable to greater production in Kenya, which tends to mine cabochon-grade ruby. Production declines in Myanmar and Tanzania were reversed in 2001 and 2004, respectively. Madagascar’s ruby output increased because of the discovery of the Andilamena and Vatomandry mining areas.

Global sapphire production is estimated to have declined from about 26,200 kg in 1995 to 22,600 kg in 2004 as production increases in Madagascar and Sri Lanka were more than offset by decreases in Australia and Tanzania. In Australia, large-scale mining operations shut down or reduced output because of high production costs. Tanzania’s production fell because of the depletion of near-surface deposits by artisanal and small-scale miners. In Madagascar, the discovery of sapphire at Ilakaka

This thin slice of iris agate from Mexico was backlit using pinpoint fiber-optic illumination to reveal the iridescence in the agate bands. The field of view is approximately 2.5 cm wide; photo by R. Weldon.
and Sakarah led to substantial increases in production from
production of geuda increased in 2003–04.

Tanzanite production declined from about 6,500 kg in
2002 to 3,100 kg in 2004 because of a lack of new deposits
being discovered and higher costs associated with the increasing
depths of small-scale mines in Blocks B and D at Merelani; cut-
backs in production have not been offset by mechanized min-
ing in Block C.

Gem production has shifted rapidly between countries and
within countries in recent years. With the depletion of near-sur-
face alluvial deposits, colored gemstone mining is likely to shift
from small-scale to large-scale operations.

Geology of Gem Deposits

The Importance of Surface Features and Adhering
Material in Deciphering the Geologic History of Alluvial
Sapphires—An Example from Western Montana
Richard B. Berg (dberg@mtech.edu)1 and Christopher F. Cooney2
1Montana Bureau of Mines and Geology, Butte, Montana; 2Gem Mountain,
Philipsburg, Montana

Western Montana hosts three large alluvial sapphire districts: terrace
along the Missouri River east of Helena, placers along Dry Cottonwood
Creek 25 km northwest of Butte, and placers in the Gem Mountain (Rock
Creek) area 90 km northwest of Butte. Though the Gem Mountain district
is the largest, the geologic processes leading to its formation are poorly
understood. A detailed study of Gem Mountain sapphires and their adhering
material by optical microscopy, scanning electron microscopy, energy-dispersive
X-ray spectroscopy, and X-ray diffraction analysis has proven useful in decipher-
ing their geologic history.

In the Gem Mountain district, metasedimentary rocks of the
Proterozoic Belt Supergroup are overlain by Tertiary
felsic volcanic rocks (both lava flows and tuffs). Sapphires
recovered adjacent to weathered volcanics exhibit two types of adhering
material. The most abundant is fine-grained kaolinitic clay that includes small glass shards. The surfaces
of some of these sapphires, as revealed by removal of the
kaolinitic coating, are almost completely covered by con-
choidal fractures. Internal conchoidal fractures are also coat-
ed with a very thin layer of kaolinite. We interpret these fea-
tures to indicate that these sapphires were brought to the
surface by violent volcanic eruption, and the accompanying
volcanic ash was weathered into kaolinite. Small remnants of
adhering felsite on other samples are evidence that some of
the sapphires in this district weathered from a volcanic rock.
Careful removal of the felsite reveals a highly irregular surface,
characterized by small flat depressions surrounded by mesa-like features that either formed during growth of the
sapphire or by resorption during magmatic transport.

Whereas the bedrock sources for many well-document-
ed alluvial sapphire deposits are basalt, we conclude that the
sapphires in the Gem Mountain sapphire district were
derived from Tertiary volcanic rocks of felsic composition.
This interpretation is based on adhering felsic volcanic rock and
associated volcanic ash. Abrasion during fluvial trans-
port produced microscopic chips that are typically concen-
trated on projections on the surface of the sapphires.

Mining of Pegmatite-related Primary Gem Deposits
Jim Clanin (jclanin54@aol.com)
JC Mining Inc., Hebron, Maine

Mining gems from pegmatites requires a variety of techniques
to remove the gem material without destroying it, and each
deposit presents its own set of challenges. For nearly 30 years
the author has mined several types of pegmatites around the
world, and has developed mining techniques for various situ-
ations based on the geology and the available resources.

Granitic pegmatites with miarolitic cavities—such as
those at the Cryo-Genie mine, San Diego County, California,
and the Mt. Mica mine, Oxford County, Maine—should be
mined with the utmost care to avoid drilling into or blasting
near a gem “pocket.” Mining at the Cryo-Genie usually con-
sisted of drilling and blasting the individual blocks of peg-
matite (i.e., between naturally occurring joints), while at Mt.
Mica this was performed in two stages. First, the area above
the core zone was removed to produce a bench, and then the
bench was carefully blasted in search of pockets.

The John Saul ruby mine, Mangare, Kenya, is a metas-
omatic deposit where a desilication process resulted in a
syenitic pegmatite called a plasmatic. The pegmatite averages
about 1 m thick and is the host for the ruby. There are no
pockets associated with this pegmatite, but some areas have
contained 40 vol.% of ruby. Since the mine is located within
the boundaries of the Tsavo National Park, blasting was not
permitted, so jackhammers and numerous workers were
employed to remove the rock.

The Landaban Rhodolite group of mines is located near
Mt. Kilimanjaro, Tanzania. The garnet is hosted by a near-
vertical granitic pegmatite, within a 10-m-thick zone that is
quartz-poor and feldspar-rich. Local miners traditionally
utilized a hammer and chisel to move the rock and a gun-
ny sack to remove the tailings. By using air-powered jack-
hammers and a chute system to remove the tailings, the
removal of pegmatite rock was increased from about 1.4 to
52 tonnes per day.

The Ambodiakatra emerald mine in eastern Madagascar is
similar to the emerald deposits of Zambia. In these deposits,
the pegmatite–hydrothermal vein system is not the host for
the gem material, but is the source of the Be needed for emer-
ald crystallization. Open-pit mining was used to exploit this
deposit and was conducted 24 hours per day, six days per
week until the rainy season began. Holes to be loaded with
explosives were bored with sinker drills during the night,
blasting occurred in the morning, and the remaining time was
spent removing the blasted rock with large excavators.
What Determines the Morphology of a Resorbed Diamond?
Yana Fedortchouk (yana@uvic.ca) and Dante Canil
School of Earth and Ocean Sciences, University of Victoria, British Columbia, Canada

Diamond resorption in kimberlite melts produces a variety of surface features. The most common are trigons, square etch pits, and the substitution of primary octahedral morphology with the hexoctahedron. The mechanism of diamond resorption in kimberlite magmas is not well understood, and therefore the causes of certain resorption features are unknown. Our experiments demonstrate that the fluid phase of kimberlite magma oxidizes diamonds. The composition of this fluid determines the shape of the diamond and the intensity of the surface resorption. Understanding the processes that lead to various natural diamond shapes will help to predict the quality of diamonds in a kimberlite pipe, to understand how these features can be imitated, to provide information on their mantle source, and to possibly distinguish diamonds from various localities.

We studied diamond oxidation at 100 kPa in a CO₂-CO gas-mixing furnace with controlled oxygen fugacity at 1000–1100°C. The diamonds were cut into cubes so that etch features on {100} surfaces could be studied. The square etch pits produced on {100} surfaces in the oxidized runs (high CO₂/CO ratio) differed in orientation, size, and shape from those produced at reducing conditions (low CO₂/CO ratio).

The crystal edges were more rounded after the oxidized runs.

High-pressure experiments also were conducted, in a piston-cylinder apparatus at 1 GPa and 1350°C, in H₂O and CO₂ fluids. The oxidation was studied on {111} faces (octahedrons) and {100} surfaces (cut cubes). The primary octahedral morphology was much better preserved in CO₂ than in H₂O. Oxidation in H₂O produced a few large flat-bottom trigon etch pits on the {111} faces, and square etch pits on the {100} surfaces. In CO₂, the whole diamond surface became covered with numerous small trigons and some hexagonal etch pits on {111} faces, and square etch pits on the {100} surfaces.

The diamond lattice has different positions of open bonds in the three primary crystal planes: {111}, {110}, and {100}. We propose that the configuration of the molecules present in the fluid determines how fast they react with certain faces of a diamond. Differences in activity of the volatiles will (1) determine the diamond oxidation rate in the three crystal planes, (2) result in faster or slower disappearance of the primary octahedral morphology, and (3) determine the shape and number of etch pits on the diamond surface. Further experiments using fluid compositions relevant to natural kimberlite, and a better understanding of the chemistry of the reaction of volatiles with diamond, will help to explain the variety of natural diamond forms.

Jadeite Jade from Guatemala:
Distinctions among Multiple Deposits
George E. Harlow (gharlow@amnh.org), Sorena S. Sorensen, Virginia B. Simons, and John Cleary

The New World jade of Middle America came from deposits of jadeite (jadeite rock) in serpentinite mélanges straddling the Motagua fault zone in central Guatemala. Sources north of the fault are now known to extend 100 km from east to west; to the south there are three distinct jadeite sources within a 15 km diameter zone.

Jadeites north of the fault are associated with high pressure–low temperature metamorphic rocks (eclogites and garnet amphibolites) in serpentinites from Pachalum (Baja Verapaz Department) to Río Hondo (Zacapa Department). These jadeites are all similar: whitish to gray-green with rare streaks of Imperial green (see figure), generally coarse grained (millimeter-to-centimeter scale), with albite, white mica, omphacite, and late analcime and no quartz. Darker green jadeite is more common away from the fault. Other rocks used as “jade” and found with jadeite include deep-green omphacite (jaguar) and omphacite-taramite rock (Jade Negro), a metasomatized mafic rock. Albite is associated with jadeite, and the assemblage indicates formation at 6–10 kbar and 300–400°C.

The jadeites south of the Motagua fault zone (again, see figure) are sourced from three areas in the mountains of Jalapa and Zacapa Departments, and are individually distinctive:

1. Near Carrizal Grande, jadeites coexist with lawsonite eclogites and blueschists. Colors vary from medium to dark green to blue-green (when light—Olmea Imperial; when dark—New Blue) with veins of dark green and/or blue omphacite; the translucency surpasses most northern jade. Phengitic muscovite is common, followed by titanite, lawsonite, omphacite, minor quartz, garnet, and rare analcime. Jadeite grain size is medium to fine (submillimeter), and alteration is minor. Assemblages indicate formation at 12–20 kbar and 300–400°C.

2. La Ceiba jadeites are generally moderate-to-intense dark green, with occasional white, lavender, and dark Imperial color, and coexist with omphacite-glaucohonite blueschists. Grain size is fine, translucency is good, but intense fracturing on the millimeter-to-centimeter scale makes this material difficult to work. Inclusions and veins consist of quartz, omphacite, diopside, cymrite, actinolite, titanite, and vesuvianite. Formation conditions are 10–14 kbar and 300–400°C.

3. La Ensenada jadeite (marketed as Lila or Rainbow jade) is whitish and opaque with green, blue, orange, and “mauve” streaks and spots. It is a fine-grained jadeite-pumpellylite rock, veined with grossular (the source of orange color), omphacite, and albite, and contains minor titanite but no quartz. This rock is essentially iron-free and coexists with an iron-free-chlorite rock and lawsonite blueschists that formed at 6–9 kbar and from <200°C to ~300°C.
Mineral Assemblages and the Origin of Ruby in the Mogok Stone Tract, Myanmar

George E. Harlow (gharlow@amnh.org)1, Ayla Pamukcu2, Saw Naung U3, and U Kyaw Thu4

1Department of Earth and Planetary Sciences, American Museum of Natural History, New York; 2University of Chicago, Illinois; 3Mogok, Myanmar; 4Macle Gem Trade Lab, Yangon, Myanmar

The Mogok Stone Tract of Myanmar (Burma) is legendary for producing the finest rubies and spinels; however, the geology of the marble-hosted assemblages is complex. In particular, rubies have been ascribed to metamorphism of aluminous sediments, but Iyer (1953) argued that the association of ruby-bearing marble with pneumatolytic veins emanating from nearby intrusives was critical. In spite of difficulties in gaining access to mines and samples, progress has been made recently in understanding the characteristics and origins of gem minerals from the Tract.

Mineral assemblages involving corundum have been studied utilizing collections at the American Museum of Natural History (~300 specimens from more than 30 mines) and those of the Burmese authors (~900 specimens from ~20 additional localities). The hosting Mogok Metamorphic Belt of marbles and schists was formed from Proterozoic sediments (>750 million years ago [Ma]) that were metamorphosed and intruded by syenitic-to-granitic magmas during collision with a Gondwana fragment (Burma Block) in Cretaceous time (~150 Ma), and later with the Indian Block commencing in Eocene time (~50 Ma), with metamorphism continuing to ~20 Ma and intrusions to ~15 Ma. This complex geologic record helps explain the diverse mineral assemblages in the Mogok marbles.

The assemblage of ruby + calcite + graphite ± muscovite ± pyrite is most common, but colorless minerals adjacent to ruby may have been overlooked. Dattaw produces ruby in marble with conspicuous blue cancrinite/davyne and less obvious scapolite + colorless sodalite ± nepheline as well as phlogopite ± spinel ± pargasite ± tourmaline. Similar assemblages with scapolite, sodalite, nepheline, datolite, or moonstone are found elsewhere in the Mogok Tract at Kolan, Lay Oo, Ongai, Pyant Gyi, Sakan Gyi, and the sources between Kabaing and Sinkwa: Wet Loo, Kyakpyatthart, and Thurein Taung. The silicates are typical of skarns, and they provide support for a likely interaction between magmas (or their fluids) and marble. The fact that rubies are surrounded by or connected to skarn-silicate veins may indicate ruby crystallization is affected or even produced by the skarn reactions.

Recent work on painite (CaZrBAl9O18; see Rossman et al., 2005 and http://minerals.caltech.edu) from mines in the Kabaing–Sinkwa area suggests growth during a skarn-forming event between leucogranite and marble. Associated minerals support this interpretation: scapolite, tourmaline, and margarite (as well as ruby). A conspicuous textural feature of these specimens is ruby crystallized on painite, demonstrating corundum growth during skarn formation.

REFERENCES

Major Diamond Mines of the World: Tectonic Location, Production, and Value

A.J.A. (Bram) Janse (archonexpl@iinet.net.au)
Archon Exploration Pty. Ltd., Perth, Western Australia

The spatial distribution of the world’s major diamond mines is intimately related to the age of the earth’s crust (see figure). According to Clifford-Janse terminology, the three age-defined tectonic crustal elements are archons, protons, and tectons. At present, all diamond mines developed on kimberlite pipes are located within the boundaries of an archon, while those developed on lamproite pipes are located on a proton. Even though only one major diamond mine is underlain by a lamproite pipe (the Argyle mine in Australia), several small diamond mines on lamproite pipes and other occurrences of diamond-bearing lamproites support this view. The figure also shows that major diamond mines largely cluster into three regions of the world: southern Africa, Siberia, and western Canada.

The tabulated data (see table in the G&G Data Depository at www.gia.edu/gemsandgemology) show that Jwaneng in Botswana has the greatest current value and very high current production, followed by Udachnaya in Siberia, Orapa in Botswana, Ekati and Diavik in Canada, and Venetia in South Africa. The Argyle mine in Australia has a high production, but a low value. The most important producers for the next decade are likely to be Jwaneng, Orapa, Venetia, and Diavik, with Jubileynaya, Nyurba (Russia), Catoca (Angola), and Murowa (Zimbabwe) having slightly less importance. Argyle will continue to produce large quantities of near-gem material. The monetary values for the top six mines are in the same league as a major gold mine or a medium-sized oil field.

Data were also tabulated for seven advanced projects for which production is planned in the near future (although Jericho already commenced production in the first quarter of 2006, it is a small mine compared to Snap Lake). Victor is also small, but it has an extraordinary high value. Gahcho Kué is currently only a resource, not yet a proven reserve and only indicated reserves are available. Camafuca is an elongated pipe or the fusion of five pipes in a line underneath the bed of the

Most of the world’s major diamond mines are located in Archean-age portions of the earth’s crust. Also shown are several projects that are expected to begin producing diamonds in the near future.
Chicapa River, and it will be first operated by a five-year dredging program.

The major mines of the future are Arkhangelskaya and Grib (both in Russia), but Grib’s opening is hampered by litigation. The Arkhangelskaya pipe will be the first of the Lomonosov cluster of five pipes to open in 2007.

Geology of Placer Gem Deposits
James M. Prudden (jpruddenpgsgems@yahoo.com)
Prudden Geoscience Services, Elko, Nevada

Placer gem depositional environments consist of colluvial, fluvial, and beach deposits. The weathering of primary gem-bearing deposits forms overlying eluvial deposits, and the down-slope migration of the residual gems by both gravity and water creates colluvial deposits. Fluvial systems range from youthful through mature and old-age sedimentological regimes with associated channel geometries that determine the hydraulic energy and therefore the locations of gem deposition. Fluvial systems commence with straight steep-channel gradients, with low depth-to-width ratios containing unsorted clasts and larger gems. This evolves into the downstream, low-energy, old-age fluvial systems with low channel gradients that host bedded, well-sorted smaller clasts deposited in a meandering fashion within a broad flood plane. Gems in this environment are smaller and more rounded. At the point where the river enters a marine or lacustrine environment, the resulting abrupt gradient change is very favorable for gem deposition. Wave energy and long-shore currents further winnow and transport gems in beach environments. Alpine and continental glaciers are nature’s “bulldozers,” and the braided fluvial streams that are fed from their melt water effectively concentrate the contained gems from the glacial rubble.

Gem characteristics such as specific gravity, hardness, shape, and durability will influence their related depositional environments and survivability, thus favoring the economic concentration of certain gems in the fluvial “milling” environment.

Select case histories of a variety of placer deposits illustrate the practicality of applying detailed geology and sedimentology to placer gem exploration: (1) Australian Tertiary modified paleo-colluvial type sapphire deposits, derived from the weathering of alkaline basalts, have been a major global source of sapphires. (2) Namibian long-shore diamond distribution along the Atlantic Ocean coast constitutes the world's most valuable diamond deposit, extending westward 100 km to the continental shelf edge and 200 km northward. The diamonds were originally liberated from South African kimberlites (and possibly more distant sources) by post-Gondwana erosion of the southern African craton, which commenced in the humid Middle Cretaceous with the formation of the ancient Karoo and Kalahari Rivers. Subsequent erosion of these diamondiferous placers was accomplished by the Orange River in the Miocene. Prolonged winnowing of the diamonds increased their value by about 500%. (3) Fluvial reworking of glacial sediments in British Columbia, Canada, concentrated sapphires and garnets from several cubic kilometers of glacial material. (4) A fluvial diamond deposit in China’s Hunan Province was deposited on complexly weathered karst bedrock, which presents challenges to sampling and mining.

Three Parageneses of Ruby and Pink Sapphire Discovered at Fiskenæsset, Greenland
William Rohtert (william.rohtert@gec.net)1 and Meghan Ritchie2
1True North Gems Inc., Vancouver, British Columbia, Canada; 2Department of Earth Sciences, University of Cambridge, United Kingdom

In the Fiskenæsset district of southwest Greenland, gem-quality corundum mineralization is widespread, well developed, and locally abundant. Corundum mineralization is observed in three paragenetic styles: metamorphic, metasomatic, and hydrothermal. There are 18 corundum showings, including nine principal ruby occurrences, recognized across a geographic domain measuring 20 × 60 km. Ruby mineralization typically occurs at the hanging-wall contact of the Archean-age, cumulate-layered, Fiskenæsset anorthosite complex. The same intrusive contact with an overlying amphibolite covering a discontinuous basal package of metasedimentary rocks is also an environment known for chromite and platinum mineralization.

The metasomatic deposits contain ruby, pink sapphire, sapphireine, kornerupine, pargasite-tschermakite, phlogopite, and red spinel in matrix association with plagioclase, hornblende, enstatite, gedrite, sillimanite, and anthophyllite. The hydrothermal deposits contain ruby, dolomite-magnesite, and kyanite with fuchsite. The metamorphic deposits consist mainly of ruby, hornblende, biotite, and anorthite. Individually, the ruby-bearing zones measure up to 20 m thick and up to 200 m long. They occur as single showings, but also as multiple showings in alignment, collectively up to 2 km in strike length.

In 2004, True North Gems collected and processed 3 tonnes from the Siggartartulik (metasomatic) occurrence, historically the best-known ruby location in the district. This sample returned 9.73 kg/tonne total corundum, which was divided into 1.5% gem, 33.5% near-gem, and 65.0% non-gem (where gem is transparent to semitransparent, near-gem is translucent to semitranslucent, and non-gem is opaque). Typically, the gem-grade material is faceted, while near-gem is made into cabochons and non-gem produces beads. In 2005, the same company collected five 3-tonne, mini-bulk samples, one from each of the following showings: Lower Annertussoq, Upper Annertussoq, Kigutilik, Ruby Island (Tasiusarsuaq), and Qaqqatsiaq. These samples were processed by standard mineral extraction techniques routine to the modern diamond industry, including dense-media separation and optic sorting, at the laboratory of SGS Lakefield Research Ltd. in Peterborough, Ontario, Canada. A total of 889.1 kg of corundum-rich concentrate was obtained, along with 29.8 kg...
of nonliberated hand-picked corundum on matrix, and another 9.6 kg of hand-picked liberated ruby and pink sapphire. Preliminary results are encouraging for the Kigutilik (metasomatic) and Upper Anner tussoq (hydrothermal) showings. Optic-sorting results indicate that the hydrothermal-type deposit shows the highest percentage of gem-quality ruby. Fiskeneset is an advanced exploration project on trajectory for production feasibility in 2008.

Controls on Mineralization in Block D’ of the Merelani Tanzanite Deposit, Tanzania
Reyno Scheepers (admin@searchmin.com)
Unit for Gemstone Geology, University of the Free State, Bloemfontein, South Africa

Tanzanite is found at only one location on Earth, the western slopes of the Lelatema mountain range ~60 km south-southeast of Mount Kilimanjaro in northeastern Tanzania. The Lelatema Mountains form part of the Eastern Granulite Complex of the Mozambique Orogenic Belt. Tanzanite mineralization resulted from a prolonged geologic history, and it shows the delicate interrelationship between primary deposition, diagenesis, metamorphism, structural geology, and geochemistry to create one of nature’s most remarkable gems. The geology of Block D’ is an example of the typical mineralization style of a tanzanite deposit. Three mining shafts have been sunk at Block D’, which borders Block D to the north side.

The deposit is flanked to the west and east by 040° striking dolomitic marble units that dip ~45° northwest. Sillimanite-kyanite-garnet gneiss occurs parallel to the dolomitic marbles. Within and parallel to the sillimanite-kyanite-garnet gneisses are zones of graphite-kyanite gneiss. The graphite-kyanite gneiss hosts several subparallel layers of metasomatic rocks consisting of calcic plagioclase, grossular, diopside, and zoisite. These layers are also wrapped around boudins (sausage-shaped structures) with relict skarn cores, in which quartz-diopside layers acted as competent units during metamorphism and boudin formation.

The boudin zones are repeated throughout the succession by tight isoclinal folds, verging northwest with fold axes plunging 20° from horizontal in a north-northeasterly direction. Further deformation of the stratigraphic sequence took place during folding associated with Pan-African metamorphism (620–500 million years ago).

The stratigraphic succession is typical for a sequence developed in a shallow marine shelf environment with intermittent addition of volcano-sedimentary material. Vanadium was introduced into the succession by the volcanic component, and organically enriched and further concentrated during early diagenesis by adsorption on clay minerals. The volcanic component is further evident by the abnormally high enrichment of Zn in specific layers of the sequence.

Quartz-diopside skarn layers developed during prograde metamorphism (850°C and 13 kbar). These layers were boudinaged and folded during two-dimensional shortening, V-bearing grossular garnet (tsavorite) crystallized in trap sites associated with boudinage. During an extended period of isobaric cooling, dewatering, and retrograde reaction, tsavorite reacted to form quartz, calcite, and tanzanite (V-bearing zoisite; Scheepers and Olivier, 2003). The ore body was further complicated by a series of shearing events that created secondary boudins and renewed tanzanite crystallization.

REFERENCE

Texture and Composition of Kosmochlor and Chromian Jadeite Aggregates from Myanmar: Implications for the Formation of Green Jadeite
Guang-Hai Shi (shigh@cugb.edu.cn)1, Bernhard Stöckhert2, and Wen-Yuan Cui3
1School of Gemology, China University of Geosciences, Beijing; 2Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Germany; 3School of Earth and Space Sciences, Peking University, Beijing

The jadeite mines of Myanmar (Burma) are the principal source of top-grade jade, including Imperial jadeite. Petrologically, Imperial jadeite is a fine-grained, Cr-bearing jadeitite. However, it is unclear how Cr3+ from chromite impurities became incorporated into the jadeite. We have studied the textures and compositions of kosmochlor and chromian jadeite aggregates (including maw-sit-sit) collected from the Myanmar jadeite area to explore how the best-quality jadeite formed.

There are four distinct textures of kosmochlor and chromian jadeite: (1) spheroidal or ellipsoidal aggregates surrounding relict chromite; (2) spheroidal or ellipsoidal aggregates with a core of low-Cr jadeite; (3) granoblastic textures in undeformed coarse-grained clinopyroxene rocks, and (4) recrystallized fine-grained aggregates of deformed low-Cr jadeite (see figure).

Electron-microprobe analysis revealed four compositional pairs of coexisting kosmochlor (Ko) and chromian jadeite (Jd) along the Ko–Jd join. Sharp compositional boundaries between them suggest the possibility of miscibility gaps or different stages of replacement of kosmochlor by jadeite. However, replaced textures of kosmochlor by jadeite exclude the possibility of miscibility gaps. The correlation between the textures and compositions of kosmochlor and jadeite is more likely associated with replacement at different stages of formation or spatial differences in the chemical environment. The presence of relict chromite in spheroidal or ellipsoidal aggregates with kosmochlor indicates a metamorphic origin of the jadeitites from original peridotites that reacted with an aqueous solution rich in Na, Al, and Si at a minimum pressure of 1.0 GPa and temperatures of 250–370°C (Shi et al., 2005). Recrystallization during later ductile deformation of the clinopyroxene rocks formed fine-grained aggregates of chromian jadeite, including the Imperial jadeite.

The textural and compositional features of the studied samples suggest that the chromium in the jadeite came from...
chromite in the adjacent host serpentinite. The chromium was incorporated into the jadeite via the following sequence: (1) metasomatic reactions of chromite to kosmochlor, forming spheroidal textures or granoblastic textures; (2) replacement reactions of kosmochlor to chromian jadeite, accompanied by metasomatism; and (3) replacement reactions of chromian jadeite to Cr-bearing jadeite (about 0.3 wt.% Cr₂O₃ in Imperial jadeite), accompanied by recrystallization induced by deformation. Further evolution of the final sequence led to the formation of light green jadeite with lower Cr contents. These processes were influenced by the local mineral assemblage, the characteristics of deformation/metamorphism induced by shearing, the pressure-temperature conditions, and local fluid compositions.

REFERENCE

Pegmatite Genesis—Complex or Simple Emplacement? Revisiting Southern California Pegmatites

Lawrence W. Snee (lsnee@usgs.gov)¹, Eugene E. Foord¹, Douglas M. Morton¹, Gary P. Landis¹, Robert O. Rye¹, and J. Blue Sheppard²

¹U.S. Geological Survey, Denver, Colorado; ²Millennium Inc., Pala, California

* Eugene E. Foord is deceased.

Are complex zoned pegmatites the product of a single injection event and the subsequent rapid cooling of late magmatic volatile-rich residual silicate melt? Some field and mineral paragenesis relationships suggest that some pegmatites were not the result of a single emplacement event. Pegmatite conductive cooling models also assume single-stage emplacement.

Snee and Foord (1991) used argon thermochronology to define the emplacement age and cooling history of gem- and specimen-producing granitic pegmatites and their host rocks in the Pala, Ramona, and Mesa Grande districts of San Diego County, California. The results showed that the pegmatites were emplaced into cool (<150°C) country rocks that are several million years older than the individual pegmatites. The apparent ages of white mica from the pegmatites ranged from 100 to about 93 million years. Surprisingly, the muscovite cores of several zoned-mica samples of the Little Three pegmatite were up to 1.3 million years older than their corresponding rims of similar composition. More recent work at other mines in southern California also document anomalous differences in the apparent ages—within single pegmatites. These mica age differences are due either to differential cooling rates, to different argon closure temperatures, or to different times of crystallization (e.g., a complex multi-event pegmatite emplacement). Field, mineral paragenesis, and fluid inclusion evidence (Cook, 1979) suggest that the classic zoned Harding pegmatite in New Mexico may also be a product of complex emplacement processes.

We have begun a more comprehensive study of these pegmatites to better understand observed mica age differences and pegmatite genesis, emplacement, and evolution processes. Along with revised mineral paragenesis and recognized complex cross-cutting field relationships, new argon and U-Pb geochronology, fluid inclusion microthermometry and gas-solute chemistry, noble gas and stable isotope compositions, and field relationships should provide insights into the magmatic volatile processes, sources of components, and pegmatite emplacement rates and processes. Additional studies, such as
that of Smith et al. (2005), which showed that incorporation of Li, F, Rb, and Cs in the mica structure resulted in lower argon closure temperatures in lepidolite, will be done to evaluate the effects of chemical zoning in white mica on argon retention.

REFERENCES

Geology of “True” Hiddenite Deposits
Michael A. Wise (wisem@si.edu)
National Museum of Natural History, Smithsonian Institution, Washington, DC.

Spodumene (LiAlSi\(_2\)O\(_6\)) is a relatively common mineral that is found predominantly in lithium-rich granitic pegmatites. Transparent, faceted spodumene may crystallize in miarolitic cavities or “pockets” that develop within some pegmatites that are emplaced at shallow crustal levels. Gem-quality spodumene may display lilac-to-pink colors (kunzite), pale yellow hues, or various shades of green. Gemmy gray to gray-blue spodumene may also occur, but these colors are not stable in sunlight and rapidly fade to pink hues. The color of chromium-bearing spodumene (hiddenite) varies from yellowish green to light green, bluish green, "grass" green, and to bright "emerald" green, the rarest and most desired color. Although "emerald" green spodumene, which was originally found near the town of Hiddenite, North Carolina, is considered to be the standard, the name hiddenite has also been misleadingly applied to ordinary pale green spodumene. The distinction between "true" hiddenite and other green varieties is significant and is based on differences in coloring agents, mode of formation, intrinsic properties (e.g., luminescence), and geologic setting.

The Hiddenite area of western North Carolina constitutes the most significant emerald-producing region in North America, and is the world's only confirmed locality for "true" hiddenite, which occurs in cavities hosted by steeply dipping quartz veins that crosscut highly deformed migmatitic schists and quartz-biotite gneiss. Associated minerals that line the cavity walls include: albite, calcite, chabazite, clinochlore, graphite, muscovite, pyrite, quartz, and rutile. Emerald, which occurs in similar quartz veins in the area, is never found together with "true" hiddenite. The crystal morphology of calcite, quartz, rutile, and pyrite can be used to differentiate between hiddenite-bearing and emerald-bearing veins.

Electron-microprobe analyses of "true" hiddenite showed fairly uniform major-element chemistry; only iron concentration varied within narrow limits (0.68–1.63 wt.%, as Fe\(_2\)O\(_3\)), but significantly higher than that of green spodumene from granitic pegmatites, which typically do not contain chromium. Vanadium was generally below the detection limit of the microprobe (<0.1 wt.% V\(_2\)O\(_5\)).

The crystallization temperature and pressure of "true" hiddenite as determined by fluid inclusion studies were well below the experimentally determined P-T stability field for spodumene from pegmatites. Stabilization of spodumene to low pressures (<1 kbar) and low temperatures (<250°C) may be related to the presence of relatively high concentrations of Fe and Cr, the source of which is currently unknown. The paragenesis of the open fissures at Hiddenite is typical of Alpine-type veins and represents the first documented occurrence of spodumene formed under hydrothermal conditions.

Laboratory Growth of Gem Materials

Optical Characterization of CVD Synthetic Diamond Plates Grown at LIMHP-CNRS, France
Anas Anthosias (anan@hrd.be), Olivier De Gryse1, Katrien De Corte1, Filip De Weerdt1, Alexandre Tallaire2, and Jocelyn Achard2
1Hoge Raad van Diamant (HRD) Research, Lie, Belgium; 2Laboratoire d’Ingénierie des Matériaux et des Hautes Pressions–Centre National de la Recherche Scientifique (LIMHP-CNRS), Université Paris 13, France

In this study, eight monocrystalline CVD synthetic diamond plates, grown in 2004 by the diamond group at LIMHP-CNRS, were investigated for the first time. The nitrogen content intentionally added to the gas phase ranged between 0 and 6 ppm. The samples were studied by optical microscopy, surface luminescence imaging (DiamondView), and FTIR, laser-induced photoluminescence (PL), and UV-Vis spectroscopy. Seven of the plates received a Gran color grade of “E” or better (i.e., colorless), and the eighth plate was brown. All the samples were type Ia and had a thickness between 175 and 785 \(\mu\)m and horizontal dimensions between 3.8 and 5.7 mm. They showed typical orange or blue fluorescence in the DiamondView, depending on the amount of nitrogen (more nitrogen caused a more orange fluorescence). When viewed with crossed polarizers and diffuse illumination, each sample showed cross-shaped birefringence patterns. These patterns have never been observed in natural diamonds. The patterns were more distinct in specimens with a higher amount of nitrogen added to the gas phase during growth.

Spectroscopic analysis revealed the presence of a feature at 737 nm (related to Si-V defects) in absorption and/or PL (see figure, left spectrum). In addition, the PL spectra of most of the samples showed N-V centers (575 nm peak), and some showed a doublet at 596.5/597.5 nm and/or a peak at 533 nm. The FTIR spectra of some samples showed H-related peaks at 3323 and 3123 cm\(^{-1}\). All these characteristics are in agreement with the results of Martineau et al. (2004).

HPHT treatment of the brown sample in a BARS press (2300°C for 15 minutes) caused the brown color to decrease. The fluorescence in the DiamondView changed from orange
in the as-grown sample to green in the treated sample. An additional FTIR peak at 3027 cm$^{-1}$ appeared, and the H-related peaks at 3323 and 3123 cm$^{-1}$ disappeared. PL spectroscopy (see figure, right spectrum) revealed the annealing of the N-V centers. The peak at 737 nm was still clearly visible and had broadened. The 596.5/597.5 nm doublet was not observed, and new features at 451–459 nm were recorded after treatment.

All the samples (as-grown and HPHT treated) could clearly be identified as CVD synthetic diamond through a combination of microscopic observation and spectroscopic analysis.

REFERENCE

New Data for Distinguishing between Hydrothermal Synthetic, Flux Synthetic, and Natural Corundum
Alexei S. Bidny (bidny@mail.ru), Olga S. Dolgova, Ivan A. Baksheev, and Irina A. Ekimenkova
Division of Mineralogy, Department of Geology, Lomonosov University, Moscow, Russia

The synthesis of colored corundum became widespread long ago. The most common growth techniques are Verneuil (flame fusion), flux, and hydrothermal. Each of these methods may be used to grow large crystals of various colors, thereby making synthetic corundum readily available and inexpensive. Differentiating natural and synthetic corundum is not challenging. Microscopy, FTIR, UV-Vis, and EDXRF data are sufficient in all cases to make this distinction.

For this study, 34 rough samples consisting of natural corundum from various deposits, and synthetic corundum grown by the flux and hydrothermal methods, were studied by spectroscopic techniques and oxygen isotopic analysis.

The IR spectra of the hydrothermal synthetic samples showed strong absorption bands related to OH complexes at 3600–3100 cm$^{-1}$. These “water” bands were much less evident in the spectra of the natural stones, and were absent from the flux synthetic corundum.

Photoluminescence spectra were also collected to distinguish between natural and flux synthetic corundum. The excitation spectra for red photoluminescence caused by chromium impurities displayed a pair of broad bands with maxima at 410 and 550 nm in all samples. However, the synthetic corundum (both flux-grown and hydrothermal) also displayed an excitation band at 290 nm (see figure, left spectrum). (Editor’s note: An excitation spectrum plots the intensity of radiation emitted by a sample as the wavelength of excitation is varied.) The emission region for that electron transition lies between 380 and 490 nm, and therefore may excite red chromium fluorescence, so identifying the center responsible for the 290 nm band is difficult.

Distinctive features were revealed in the UV absorption spectra of the samples. In addition to common chromium and iron absorptions there was a band at 342 nm in the spectra of the flux synthetic corundum (see figure, right spectrum).

Oxygen isotopic composition was studied by a MAT-250 mass spectrometer at GEOCHI RAS (Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences), Moscow, Russia. The isotopic composition of the natural samples and flux synthetic corundum were quite different from those of the hydrothermal synthetics. The δ^{18}O value for most of the natural samples ranged from +2.0 to +9.1‰, although

These photoluminescence spectra (514 nm excitation) were taken of CVD synthetic diamonds before (left) and after (right) HPHT treatment.
values up to +23.0‰ have been reported for natural corundum (Giuliani et al., 2005). The δ^{18}O value for the flux synthetic corundum ranged from +4.8 to +14.8‰, and for the hydrothermal synthetic samples it ranged from −5.8 to −0.7‰.

In combination with standard gemological observations, isotopic analysis can help distinguish natural and hydrothermal synthetic corundum. Since isotopic analysis is a destructive technique, it may best be used for rough corundum.

Acknowledgments: The isotopic study was financially supported by the Gemological Centre of Lomonosov Moscow State University.

REFERENCE

Study of Fancy-Color and Near-Colorless HPHT-grown Synthetic Diamonds from Advanced Optical Technology Co., Canada

Branko Deljanin (brankod@eglcanada.ca), Dusan Simic, Marina Epelboym, and Alexander M. Zaitsev

1EGL Gem Lab, Vancouver, British Columbia, Canada; 2EGL USA, New York; 3College of Staten Island, City University, New York

Laboratory-created diamonds now on the market are grown under high-pressure, high-temperature (HPHT) conditions, and in the last few years, they have become more available in the jewelry trade. EGL USA has studied yellow-to-orange synthetic diamonds from Chatham Created Gems and the Gemesis Corporation (Woodring and Deljanin, 2004), and as a result of this research is offering a laboratory service of testing and certifying synthetic diamonds.

This is the first study of synthetic diamonds created by Advanced Optical Technologies Corp. (AOTC), based in Ottawa, Canada. They are producing as-grown yellow-to-orange, blue, and near-colorless synthetic diamonds, as well as pink-to-purple ones that are produced by the irradiation and annealing of as-grown yellows. Produced in Europe using Russian BARS-type presses, the crystals typically weigh 1–4 ct, and the polished samples are 0.50–2 ct. Recently AOTC has started commercially selling their synthetic diamonds for jewelry purposes in North America under the name “Adia Created Diamonds.” All of the faceted stones are certified and laser inscribed as “AOTC-created” at EGL in Vancouver, Canada. Since the color of AOTC-created diamonds is stable, EGL is grading them with the same terminology that is used for natural diamonds.

We examined the following AOTC synthetic diamonds: 247 yellow to orange (Fancy Light to Fancy Vivid), 68 blue (light to Fancy Vivid), eight pink to purple (Fancy Intense to Fancy Deep), and five near colorless (D to I). Some contained gray metallic inclusions that were irregular in shape and very different from crystals seen in natural diamonds. Their clarity grades ranged from VVS to I, with the majority (59%) in the VVS to VS categories.

Most synthetic diamonds from other producers can be identified by a characteristic cross-shaped UV luminescence pattern that is stronger in short-wave than in long-wave UV radiation. The majority of the AOTC-created diamonds did not show characteristic color zoning nor any fluorescence pattern when illuminated with a standard UV lamp, so we used UV sources with higher intensity such as the DiamondView and a custom-made EGL instrument.

Natural and synthetic corundum can be differentiated by their excitation spectra (left) and UV absorption spectra (right).
(at wavelengths of 220, 254, and 365 nm). With this UV illumination, we could observe the cubo-octahedral color zoning that is typical of HPHT-grown synthetic diamonds. These new AOTC-created synthetic diamonds can be separated from their natural counterparts based on careful observation with the microscope, and through the use of crossed polarizers, the DiamondView, and advanced spectroscopy.

REFERENCE

New Gem Localities

Ultraviolet Mineral Prospecting for Sapphire on Baffin Island, Nunavut, Canada

Luc Lepage¹ and William Rohtert (william.rohtert@gte.net)²
¹Department of Geological Sciences and Geological Engineering, Queens University, Kingston, Ontario, Canada; ²True North Gems Inc., Vancouver, British Columbia, Canada

The Beluga sapphire occurrence on Baffin Island, Nunavut, Canada, is a metamorphic-type deposit with a hydrothermal overprint. Sapphire mineralization occurs as a late metamorphic and hydrothermal replacement within a coarse-grained, calc-silicate gangue consisting principally of anorthite, calcite, diopside, dolomite, phlogopite, potassic feldspar, and scapolite with lesser amounts of apatite, graphite, muscovite, pyrrhotite, spinel, and zircon. Rare phases include nepheline, rutile, dravite tourmaline, sanbornite, thomsonite, and zirconolite.

To date, 12 gem corundum occurrences, including blue,
colorless, pink, and yellow sapphires, have been discovered over a lateral distance of 2,700 m and across an elevation range of 50 m. These occurrences lie within four geographic clusters, measuring from 220 \(\times \) 100 m to 600 \(\times \) 200 m, each comprising multiple showings of gem corundum in close association with abundant, coarse-grained, fluorescent scapolite. The latter mineral association triggered the development of a scapolite surveying technique that greatly increased the effectiveness of sapphire prospecting on the Beluga property. The very strong yellow fluorescence of scapolite to long-wave UV radiation is due to trace amounts of sulfur, a known activator element, within its crystal structure. The origin of the sulfur is unclear, but it appears to be closely related to the hydrothermal event that produced the sapphires.

Scapolite is one of the brightest fluorescent minerals known, and its yellow luminescence could easily be distinguished from the cyan-greens of the fluorescent calcite precipitates and the pale whites of the lichen-covered rocks. However, under Arctic twilight conditions, a classic UV lamp can only produce scapolite fluorescence from a short distance (<1 m), while the light emitting diode (LED) UV lamp can increase this distance to well over 5 m. The modern LED technology also produces UV radiation that does not require further filtering, saving considerable battery power while producing the same UV output. Fluorescence was further enhanced by using special long-pass filters to block the shorter wavelength colors (violets and blues), and carefully selecting the LED wavelength that is closer to the optimum excitation wavelength of scapolite (i.e., a slightly longer wavelength than conventional long-wave UV).

From drift prospecting to the interpretation of hydrothermal contacts within the mineralized zones, scapolite fluorescence was a powerful tool at all stages of sapphire exploration at this locality.

Gemological Investigation of Multicolored Tourmalines from New Localities in Madagascar

Margherita Superchi (superchi@mi.camcom.it)\(^1\), Federico Pezzotta\(^2\), and Elena Gambini\(^3\)

\(^1\)CISGEM of the Milan Chamber of Commerce, Milan, Italy; \(^2\)Natural History Museum, Milan, Italy

The Proterozoic crystalline basement of central Madagascar is characterized by the presence of one of the most important concentrations of rare-element, gem-bearing pegmatites in the world. Although gems have been actively mined in this area for more than a century, new discoveries are occasionally made by local miners in wild and relatively unexplored areas. Over the past few years, a series of new mining areas have been established, mainly for multicolored tourmaline.

Several gem tourmaline samples from these new localities, consisting of crystal fragments, slices, and cut gemstones and cabochons, were selected for chemical analysis and spectroscopic studies. They originated from the following deposits:

1. Manapa area (southwest of Antsirabe): pegmatites at Ampanodiana (red-purple), Ambatomigaby (“ruby” red to purple), Ambesabora (purplish red, purple, azure blue, and vivid blue), and Antsikoza (purple).

2. Camp Robin area (between Ambositra and Fianarantsoa): Anjomanandihizana and Fiadanana-Valozoro deposits and the Ankitsikitsika and Antsengy pegmatites. The samples from these localities were multicolored, mainly in pink, purple, red, “olive” green, yellow-brown, and yellow. Homogeneous red crystals also have been produced from the Camp Robin area (see, e.g., the figure).

In addition, a selection of rough and cut tourmaline (red-purple to bright blue) was characterized from the Anjahamiary pegmatite, located close to Tranomaro village, in the Fort Dauphin area of southern Madagascar. These samples were collected in 1999–2000.

The tourmalines were studied with UV-Vis and FTIR absorption spectroscopy, Raman spectroscopy, and electron-microprobe analysis using an energy-dispersive system. The preliminary data indicate that regardless of their color, the tourmalines range in composition from Ca-rich elbaite to liddicoaitite. No traces of Cu have been found in the azure blue and vivid blue samples from the Ambesabora and Anjahamiary deposits. Significant amounts of the trace elements Bi and Pb have been found in multicolored tourmalines from the Antsengy pegmatite. Traces of Pb, but not of Bi, have been found in multicolored tourmalines of the Anjahamiary pegmatite.
The Past, Present, and Future of Demantoid Green Garnet from Russia

Nikolai B. Kouznetsov (demantoidking@yahoo.com)
Stone Flower, LLC, Fallbrook, California

Demantoid evokes “beauty” or “green fire” with a characteristic horsetail inclusion. It was the most desirable stone of the Russian Czar’s court. This stone became famous for its unique characteristics, such as its high index of refraction (1.89) and dispersion (0.057; for comparison, diamond is 0.044). Demantoid is the chromium-green gem variety of andradite garnet discovered in the Central Ural Mountains of Russia in the mid-19th century. Finnish mineralogist Nils Nordensheld gave the gem its name, which means “diamond-like.” Demantoid was very popular in Russia from about 1875 to 1920 and was used by Carl Fabergé and other court jewelers. New York’s Tiffany & Co. had its chief gemologist, George F. Kunz, travel to Russia to buy demantoids. But after the Bolshevik revolution in 1917, the fiery green gems ceased to be of any interest to the new government.

Since the late-1980s, with the fall of the Soviet Union, demantoid returned to the international gem market and serious efforts were made to find more demantoid deposits. In the 1990s, Pala International’s William Larson and the author started to work intensively at several mining areas in Russia. In the summer of 2002, we introduced a large quantity of gem-quality demantoid (tens of thousands of carats) to the international gem market. With financial growth and political stability in Russia, several Russian companies have successfully mined demantoids and the needs of miners are now being addressed. Recently, several hundred kilograms of rough were excavated in various parts of the Central Urals. Slowly, the stone is carving its niche in the world industry, being sought not only by wealthy collectors, but also by big jewelry companies (e.g., in Japan, it is used in various settings including wedding rings). Demantoid is on the path to being known and recognized worldwide.
The Techniques and Art of Cutting
“The World’s Largest Gemstone Pendant,” Bahia: A Natural, Transparent, Rutile Quartz Sculpture
Glenn Lehrer (glen@lehrerdnsigns.com) and Lawrence Stoller.

Artists Glenn Lehrer and Lawrence Stoller transformed a natural, doubly terminated rutile crystal weighing 370 kg (814 lb) into “The World’s Largest Gemstone Pendant.” Finished, it weighs 201 kg (443 lb), and measures ~1.5 m (5 ft) in length. It now hangs suspended in the Martin Katz Gallery of the GIA headquarters in Carlsbad. Initially, the artists anticipated that it would take 18 months to complete the sculpture. Instead, it took seven and a half years. Several factors contributed to the challenge of its cutting and have set Bahia far apart from any other large, transparent gemstone.

1. The size and external quality of the crystal places it as one of the largest, finest pieces to be unearthed. The logistics of moving the piece, as well as cutting it, made Bahia a technical challenge.

2. The exceptional clarity and transparency of the Bahia crystal is in the 98% optical range, rare for its size. Also notable are the formations of bursts and curves of golden rutile needles. This occurrence is very desirable in quartz. Among the highlights is a roughly 30 cm twinned “star” of rutile needles floating at the center of the quartz.

3. Unusual combinations of lapidary skills and engineering were required to sculpt Bahia. Cutting and polishing as large a gemstone as Bahia required lapidary equipment that did not exist at that time. Also, cutting a large flat face on a gemstone is exponentially more difficult and more time consuming, in order to achieve an optical polish, than on smaller surfaces.

4. Designing the metal frame to hold the 201 kg fragile quartz crystal suspended from a ceiling presented many challenges. The risks multiplied at every stage—from the discovery of two natural internal cleavages to the uncertainty of successfully hanging a fragile crystal of this weight. The risk of damaging the stone at any point along the seven-and-a-half year journey helped make the ultimate success of Bahia even greater. Perhaps most important, Bahia is a wonder to behold. It offers the opportunity to experience the beauty and wonder of the natural endowments of the earth and our relationship to it.

The Emerald Business in South America

South America is considered by many in the gemstone industry to be the most important continent for emerald production. Colombia is the number one exporter of emeralds to the United States, and Brazil is also a highly important commercial source of emeralds. This information was obtained during two trips to the mining areas organized by the International Colored Gemstone Association (ICA) and subsequent correspondence with ICA members.

The techniques used to explore and develop new mines, such as the Piteiras mine in Minas Gerais, Brazil, are typically more common for diamond mines than for colored stone mines. Emerald cutter and wholesaler Stone World of São Paulo, Brazil, formed a joint venture with Seahawk Minerals to vertically integrate the operation from mine to cutter to wholesale office. The Belmont mine, also in Minas Gerais, began in a more traditional process for colored stone mines. Emeralds were found on this property, which still operates as a cattle ranch. The Belmont mine began as a highly successful open-pit operation, which continues today. The most advanced resources in geological modeling and mine planning have led to the opening of an underground mine to complement the open-pit operation. Belmont has an extensive sorting operation for their rough to meet the needs of their customers.

The La Pita area in Colombia has become the major commercial emerald-producing area in the country, with most production coming from the Consorcio mine. A number of other productive underground mines also exist in this area by the Río Minero, including the La Pita Tunnel, Cunas, El Totumo, and Polveros mines. The Puerto Arturo mine in Muzo is still in production and under control of the Carranza group, which also has a minor partnership in the Consorcio mine and an influential stake in the Cunas mine. Many of the mine stakeholders in Colombia, whether they have interests in the La Pita, Muzo, Cospuéz, or Chivor areas, are also involved in cutting and wholesale sales of polished goods.

Afghanistan Gem Deposits: Studying Newly Reopened Classics and Looking for New Deposits
Lawrence W. Snee, U.S. Geological Survey (retired), Denver, Colorado

This presentation was also included in the GRC. Please refer to pp. 116–117 to read the abstract.

Diamonds
An Exact Replica of the Original Mogul Cut Koh-i-Noor Diamond
John Nels Hatleberg, BigGems, New York

The saying “Whoever owns the Koh-i-Noor rules the world” depicts the incomparable status this diamond has commanded throughout history. The Koh-i-Noor’s documented account dates to the early 16th century and the memoirs of Babur, the first Mogul emperor. When the British annexed the Punjab region of India in 1849, the Koh-i-Noor was surrendered to Queen Victoria. The jewel was showcased at the Crystal Palace Exhibition of 1851. Afterwards the diamond...
was recut, reduced from its Mogul form of 186.2 ct to a stan-
dard oval brilliant cut of 105.60 ct. The Koh-i-Noor is now
displayed at The Tower of London, set in the Queen Elizabeth
The Queen Mother’s Crown.

In Famous Diamonds, Ian Balfour (1987) states that the
directors of the British Museum called for a mold of the Koh-
i-Noor to be made prior to the recutting of the diamond. In
1992 a curator of the Natural History Museum London, Peter
Tandy, and I located a plaster cast inscribed “This is a copy of
the original Koh-i-Noor diamond prior to its recutting 1851”
and initialed “NSM,” for Neville Story-Maskelyne, the keeper
of the collection at that time. The accuracy of this cast, formed
from the diamond itself, made it possible to create a replica of the original form of the Koh-i-Noor.

Thirty years later, at the request of the Natural History
Museum London, the author created a replica of the first cut-
ting of the Koh-i-Noor for inclusion in their 2005 “Diamonds” exhibition. This replica invites questions about the
present diamond and its Mogul predecessor. Significantly,
the replica refutes the assumption that the recutting was a
“disaster” due to the resultant weight loss of 43%. The origi-
nal Koh-i-Noor was a 4 grainer crystal that was superficially
covered in facets to maximize weight retention. This repre-
sents the habit, preference, and perhaps limits of Indian dia-
mond cutting during the Mogul period. The “recutting” process was therefore more of a “cutting” process in which a
crystal form was the starting material. The weight loss could
due to the resultant weight loss of 43%. The origi-
nal Koh-i-Noor was a 4 grainer crystal that was superficially
covered in facets to maximize weight retention. This repre-
sents the habit, preference, and perhaps limits of Indian dia-
mond cutting during the Mogul period. The “recutting” process was therefore more of a “cutting” process in which a
crystal form was the starting material. The weight loss could
due to the resultant weight loss of 43%. The origi-
nal Koh-i-Noor was a 4 grainer crystal that was superficially
covered in facets to maximize weight retention. This repre-
sents the habit, preference, and perhaps limits of Indian dia-
tal Koh-i-Noor diamond prior to its recutting 1851”
and initialed “NSM,” for Neville Story-Maskelyne, the keep-
er of the collection at that time. The accuracy of this cast,
formed from the diamond itself, made it possible to create a
 replica of the original form of the Koh-i-Noor.

Within the domain of diamonds, the Koh-i-Noor above
all others demands to be regarded in the realm of the fantas-
tic. This replica of the original Koh-i-Noor has been called its
perfect complement. Further study of this replica will help
clarify more of the history of this colossal jewel.

REFERENCE

Diamond Grading Laboratory Peer Review

Garry Holloway (garryh@ideal-scope.com)
Ideal-Scope, Melbourne, Australia

A proposed new international Diamond Grading Review
Association (DGRA) will study diamonds graded by major
labs that have been suggested to have large grading errors.
Volunteer experts will assess diamonds with claims of erro-
neous grades. If they believe other major labs would give more
than one grade difference, the stone will be sent anonymous-
ly to other labs for grading. DGRA will publish the results of
stones that differ by two or more grades (or three or more
AGS cut grades) in color, clarity, cut, or finish at
www.pricescope.com. Market forces and peer pressure would
motivate labs to improve their processes. If discrepancies are
not found, then publication of these grading reports could
dispel myths and promote confidence within the trade and
consumers.

Background. Diamond grading is subjective, but “myths”
abound that labs make “mistakes.” The DGRA’s aim is
to determine the validity of these claims. For example, in a 2004
survey conducted by Pricescope.com, none of 16 stones were
given the same color and clarity grading by the tested three
labs (AGS, EGL-USA, and GIA), but none of the reports dif-
fered by more than two grades. When owners who submitted
a diamond think a grade is inaccurate, they can either
challenge it or send the stone to another lab, which is inefficient and costly. “Softly graded” diamonds cause a lack of
confidence and tarnish the diamond and jewelry industry.

The Process. Volunteer experts will oversee an Internet forum
where anyone who believes a diamond has been graded
wrongly by two or more grades in color or clarity may anony-
mously post the following information:

- A legible certificate image.
- Evidence of grade errors such as microscope photos, col-
 orimeter or spectral data, independent appraisers’ opin-
 ions, cut data such as Firescope, Ideal-scope, ASET, or
H&A images. Proportion data, three-dimensional models,
or reports from Brilliancescope, ImaGem, or Isee2 may
also be submitted.

Expert discussions in a private forum may result in a request
for the owner to forward the stone for further testing. Experts
should be independent of major labs to protect the reputa-
tions of the experts and the laboratories. Diamonds that pro-
vide appropriate illustrations of inaccurate grading may be
purchased. Grading reports of diamonds with more than one
grade difference will be published on the forum, and be made
available to trade journals and public media. The DGRA will
be partially funded through donations.

**Color Treatment of Diamonds and their
Potential in Designer Jewelry**

Etienne Perret (etienne@etienneperret.com)
Etienne Perret & Co., Camden, Maine

Diamonds with unusual bodycolors have always been treas-
ured by connoisseurs. Since they are extremely rare, colored
diamonds have typically been owned by royalty and the
wealthiest collectors. Artists, experimenters, and scientists
have tried for generations to artificially achieve colors simi-
lar to those seen in natural-color diamonds. The first color-
enhancing techniques were not permanent and often not
disclosed. Many of these early experiments involved types of
irradiation that made the finished diamond unsafe to wear.
Sir William Crookes, a physicist with a love of gemstones, in 1904 conducted a series of experiments using radium salts to expose diamonds to radiation. The diamonds turned a dark green. Unfortunately, the treatment also left the diamonds strongly radioactive. Mr. Crookes donated a treated diamond octahedron to the British Museum in 1914, where it remains today: still radioactive and still green.

Creative experimentation led to the development of treatment techniques yielding safe, permanent, and attractive colors in diamonds. Electron bombardment, sometimes in combination with heat, is the most common and safest way to alter a diamond’s color. With different combinations of bombardment intensity, exposure durations, and heat, a wide variety of colors has been achieved.

Most treated-color diamonds available in the market are in a price range similar to that of fine colorless diamonds. The diamonds chosen for treatment usually exhibit a slight brown or gray color. Parcels of diamonds, often hundreds of carats at a time, are sent to a treatment facility. The cost to color treat diamonds is usually between $50 and $200 per carat for most of the standard colors—blue, green, orange, yellow, and black. Reds, purples, and pinks are made from the rare type IIa diamonds and, therefore, are more costly.

The rainbow of colors that are available today allows jewelry designers to use far more than colorless diamonds in jewelry (see figure). They can now “paint” with combinations of colors to create unique items that were never possible with standard diamond jewelry. We now see rose gold pendants set with purple and orange diamonds, yellow gold rings set with yellow, green, and blue diamonds, or brooches using black and colorless diamonds.

Thanks to these new color treatment processes, diamond jewelry in a wide variety of colors is possible at a price that is affordable for much of the jewelry-buying public.

The AGS Performance Cut Grading System
Peter Yantzer (pyantzer@agslab.com) and Jason Quick
American Gem Society Laboratories, Las Vegas, Nevada

In May 2005, the American Gem Society (AGS) introduced a new cut-grade system that reflects the Society’s transition from a proportion-based cut-grade system to one based on performance. The performance grading system considers more physical measurements of a diamond and uses more computer analysis than the previous system. It also uses criteria based on newly developed technology.

In the performance system, all facets of a diamond are measured in three dimensions rather than two. The measurements are used by a computer program to trace light rays traveling through a diamond. The ray-tracing program measures the quantity and characteristics of the light being returned to the viewer.

The methodology can be applied to all shapes and facet arrangements, with different performance thresholds for each shape. The Princess shape proved to be difficult to model. Unlike the standard Round Brilliant, the Princess has two crown main angles and two pavilion main angles. This difference increased the number of proportion combinations substantially.

Proportion factors in the new system include pavilion angles, crown angles, table percentage, star facet length, lower girdle facet length, girdle thickness, culet size, weight ratio, durability, and “tilt.” Durability is a factor when the crown angles are less than 30°. “Tilt” determines at what point the girdle reflects in the table.

Light performance categories include brightness, dispersion, leakage, and contrast. Contrast is the pattern of light and dark regions seen when observing a faceted diamond. It can produce positive or negative optical effects.

A diamond is first analyzed using a non-contact measuring device, which also creates a three-dimensional model. By importing the three-dimensional model into the AGS ray-tracing software, the grader receives values for proportions and light performance.

The grader then analyzes the girdle, culet, symmetry, and polish characteristics of the diamond. All these factors form the three elements of the final cut grade: Light Performance, Proportion Factors, and Finish.

From Alexander the Great to Elihu Yale: A Study of India and the Diamond Trade
Benjamin Zucker (zuckerbenj@aol.com)
Precious Stones Company, New York

About 2,000 years ago, the only known diamonds were of Indian origin and were not cut or faceted. There are four gold rings each set with an uncut octahedral diamond crystal in known private collections.

The Indian diamond crystal was cherished for its colorlessness, which allowed it to act as a prism splitting white light into prismatic colors.
The earliest known important diamond dates from the 4th century A.D. The diamond originates from an Indian diamond mine and is mounted in a massive Roman gold ring with an opening at the bottom so the adamantine or "all-conquering" spirit of the diamond might flow into the wearer of the ring.

In the early 15th century, diamond dust and a slow moving diamond wheel were developed to grind down one point of the diamond converting it to a perfect "table cut." A table cut diamond ring from Antwerp dated at 1620 shows the increase in brightness achieved by the European cutters. Similarly, when the rose cut was perfected in the early 17th century, the observed fire in a diamond was greatly enhanced.

In the late 17th century, various cutting centers developed in London, Antwerp, Paris, and Amsterdam. Uncut diamonds were shipped by Elihu Yale and other diamond traders from Madras to European cutters. The European brilliant cut, often with high crown angles much like the Indian cut diamonds, as well as a more symmetrical pavilion faceting plan, greatly increased the brightness and fire of the diamond.

Jean Baptiste Tavernier, a knowledgeable European traveler to India, noted that Indian diamond cutters placed a great many facets on a diamond primarily to hide inclusions. The open Indian culets have long been regarded as "weight savers." In fact, this style actually increased diamond brightness.

Marcel Tolkowsky's proportions, designed to maximize brightness, may create a diamond with less "charm" or "character" than the earlier cuts. Recent GIA cutting standards, using engineering and scientific solutions, try to bridge the lessons learned centuries ago in India and in Europe with more symmetrical pavilion faceting plans.

Similarly, when the rose cut was perfected in the early 17th century, the observed fire in a diamond was greatly enhanced. The earliest known important diamond dates from the 4th century A.D. The diamond originates from an Indian diamond mine and is mounted in a massive Roman gold ring with an opening at the bottom so the adamantine or "all-conquering" spirit of the diamond might flow into the wearer of the ring.

The challenge to Madagascar is how a country with one of the world’s poorest countries. It was known since the 1890s as "L’Ile des Beryls," or "Island of Beryls," though more recently it has become an important source of sapphires and rubies. The gem deposits of Madagascar are staggering; however, most remain unprospected and undeveloped.

In the late 17th century, various cutting centers developed in London, Antwerp, Paris, and Amsterdam. Uncut diamonds were shipped by Elihu Yale and other diamond traders from Madras to European cutters. The European brilliant cut, often with high crown angles much like the Indian cut diamonds, as well as a more symmetrical pavilion faceting plan, greatly increased the brightness and fire of the diamond.

Jean Baptiste Tavernier, a knowledgeable European traveler to India, noted that Indian diamond cutters placed a great many facets on a diamond primarily to hide inclusions. The open Indian culets have long been regarded as "weight savers." In fact, this style actually increased diamond brightness.

Marcel Tolkowsky’s proportions, designed to maximize brightness, may create a diamond with less “charm” or “character” than the earlier cuts. Recent GIA cutting standards, using engineering and scientific solutions, try to bridge the lessons learned centuries ago in India and in Europe with today’s desire for diamonds that have high brightness and a large amount of fire.

Gemology Education

Case Study Madagascar:
Progress and Development through Education
Tom Cushman (tomcush@cox.net)
Institut de Gemmologie de Madagascar (IGM), Antananarivo, Madagascar

Although blessed with abundant mineral wealth, Madagascar is one of the world’s poorest countries. It was known since the 1890s as "L’Ile des Beryls," or "Island of Beryls," though more recently it has become an important source of sapphires and rubies. The gem deposits of Madagascar are staggering; however, most remain unprospected and undeveloped.

The challenge to Madagascar is how a country with one of the world’s lowest per capita incomes, 50% illiteracy, and a seriously degraded infrastructure can better manage and profit from its mineral wealth. One solution, proposed by the Mineral Resources Governance Project (PGRM), was to open the Institute of Gemmology of Madagascar (IGM).

IGM, a World Bank–funded project, opened in October 2003 in the capital city, Antananarivo. IGM’s first offering was the GIA Gemstone Identification Extension Course taught in French by Ms. Marisa Zachovay. Since then, the four Malagasy gemology instructors have graduated 20 new FGA (Fellow of the Gemmological Association) gemologists, and have assisted in writing an original two-week “Practical Gemology” course. The instructors have also written, and offered to over 1,200 rural participants, a Malagasy language one-day “Gemmologie Pour Tous” (Gemology for Everyone) class. Recently, a gemstone laboratory opened in Antananarivo.

IGM’s lapidary course has taught meepoint faceting to over 300 cutters. The results of that course are readily apparent in the improved cuts of offerings at the twice-monthly gemstone market held in Antananarivo and throughout the island.

To offer the most varied gem education possible, IGM invited GIA to present its Gem Identification, Diamond Grading, and Colored Stone Grading extension courses, in French in 2004 and in English in 2005. HRD was invited to present its French language Diamond Grading course in 2005.

The opportunities for the Malagasy to benefit from their new competencies and value-added products are not limited to the local market. IGM sponsored workshops to change the law to allow non-resident foreign buyers to legally export gems from Madagascar, leading to an increase in gem exports, and has assisted Malagasy gem dealers in exhibiting at international venues including Mauritius, Bangkok, and Tucson.

The Gem & Mineral Council of the Natural History Museum of Los Angeles County
Anthony R. Kampf (akampf@nhm.org), Charles I. Carmona, Danusia Niklewicz, Mary L. Johnson, and Dona M. Dirham

In 1985, a group of leaders and enthusiasts in the Los Angeles gem and mineral community—including Richard T. Liddicoat, Jr., George R. Rossman, Douglas J. Macdonald, Hyman Savinar, Cosmo Altobelli, and Ernest Lever—helped to found a support organization for the gem and mineral program at the Natural History Museum of Los Angeles County. More than two decades later, this organization, known as The Gem & Mineral Council, continues to thrive as one of the foremost museum gem and mineral support and public programming organizations, serving as a model for other such organizations around the world.

The Gem & Mineral Council provides its members with wide-ranging opportunities to advance their knowledge and appreciation of gems and minerals. At the same time, the Council has generated much-needed support for the museum’s Mineral Sciences Department, allowing it to maintain active acquisition, exhibition, education, and research programs.
Among the more than 200 events staged by the Council over the years have been educational lectures by world-renowned experts, exclusive social events, and domestic and international field trips. International tours have included visits to Brazil, East Africa, Germany, Russia, and Thailand.

In 1996, the Council initiated an innovative fund-raising program called “Adopt-A-Mineral” to promote the growth of the museum’s collection. A person or group can adopt a gem or mineral by making a tax-deductible contribution equivalent to the current estimated value of the specimen. In return, the adopted specimen permanently bears the donor’s name or designation. Forty-six specimens have been adopted thus far, with nearly $60,000 raised.

In 1998, the Council published The Photo-Atlas of Minerals CD-ROM, which quickly became the most popular mineral reference CD-ROM, with nearly 6,000 copies sold. Now a greatly expanded DVD-ROM version, containing nearly 16,000 images, is available.

Over the past two decades, The Gem & Mineral Council has been essential to the museum’s gem and mineral collection, exhibition, research, and programming efforts. Additional information is available on the Council’s website: www.nhm.org/gmc.

Course Development at the Gemological Institute of America

Duncan Pay (dpay@gia.edu)
GIA Course Development, Carlsbad

GIA’s founder, Robert M. Shipley, conducted his first gemology class on the campus of the University of Southern California. He then wrote additional course material and offered it through Distance Education. Later, he offered short-term, on-site courses to jewelers nationwide.

Today, the Course Development department researches and writes GIA’s texts. The department includes researchers, writers, and editors. We also employ video specialists, gemologists, jewelry specialists, and graphic artists and transfer other specialists into Course Development as needed.

To ensure that our materials meet industry needs, we have a rigorous course-development process. Once we establish a need for a new course or a substantial course revision, our curriculum committee meets to decide course objectives and student outcomes. In addition, we solicit input from many segments of the industry when we develop our new course objectives.

Once outlines are approved, our writers compose drafts guided by the department’s subject specialists and Education Department management. Next a selected group from GIA Education, GIA Research, and others in the Institute with knowledge in that particular subject reviews the content. We then implement the reviewers’ comments and lay out the assignment with appropriately placed text, photographs, illustrations, and captions.

Once the assignment has the “look and feel” of a completed product, it is often submitted for review to an external subject specialist. We also send drafts to internal subject specialists, who use their wide range of experience to review the information for accuracy and proper terminology.

As the written course material progresses through the review process, we work on classroom presentations, instructor notes, and teaching schedules with Education management and faculty.

Outside of faculty contributions, the most important feedback about our education programs comes from the industry. We receive input from our Board of Governors and industry advisory groups, as well as from alumni and current students.

Our ongoing contact with the jewelry industry and our Research Department keeps us abreast of new discoveries, synthetic materials, and treatments. We also subscribe to commercial price lists and trade publications. We monitor industry and general news for events that may affect course material. Course development at GIA is a continual, dynamic process that we believe leads to clearly written, attractive, and valuable material that benefits all our students.

Gemological Institute of America’s Public Outreach Programs

Kimberly Vagner1 (kvagner@gia.edu), Larne Boyles2, Dona Dirlam1, Elise Misiorowski2, Patricia Syvrud1, Peggy Titamis1, and Yvette Wilson2

1GIA Institute Advancement, Carlsbad; 2GIA Guest Services, Carlsbad

GIA’s nonprofit mission—to ensure the public trust in gems and jewelry—is manifested through its core programs of education, research, and laboratory sciences. Over the past four years, complimentary programs have been developed to expand GIA’s public outreach in support of this critical mission. These programs are valuable assets to the public, the industry, and the Institute.

GIA Library. As the largest gemological library and reference center in the world, with over 38,000 titles, the Richard T. Liddicoat Gemological Library and Information Center is the heart of the Institute. Expert library staff members are accessible by phone, e-mail, or in person to answer questions, and the library is open to the trade and the public for on-site research. Impressive progress with the GIA Digital Asset Management System, Oral History project, and a growing number of new titles emphasizes that the library is growing and evolving to meet the needs of the public, the industry, and the Institute.

GIA Museum. The GIA Museum is committed to advancing the world’s understanding of gemstones, gemology, and jewelry (see figure). Through development and growth of the permanent display collection, providing GIA instructors access to the gems in the collection, and collaboration with the Research and Gems & Gemology departments, the GIA Museum has
proven itself to be a strong and viable presence in the Institute. Exhibits are rotated on a regular basis to benefit GIA’s many visitors and students.

GIA Guest Services. This department hosts thousands of public and industry guests each year. The Carlsbad campus is open weekdays, and (pre-scheduled only) tours of current exhibits are free and available to the public year-round, except when the Institute is closed for special events and holidays. As part of its service to the Institute, the successful GIA Junior Gemologist Program™ is taught on campus and on site at county elementary schools. A docent training program was created to support the increasing demand for tours.

Gemology Topics

Digital Asset Management for Gem and Jewelry Photography

Judy Colbert (jcolbert@gia.edu), Peggy Tsiamis, Sharon Bohannon, Kathleen Dillon, and Kevin Schumacher
GIA, R.T. Liddicoat Gemological Library and Information Center, Carlsbad

Photography of gemstones and jewelry is an important communication medium in the gem and jewelry industry. Photos are used for educational purposes, marketing materials, editorial publications, and other practical applications. However, professional photography can be very expensive.

At GIA, organization of photographs will assist archiving, easy access and retrieval, and retaining the information associated with each photographic image. Since the preferred format for photography is now digital, a digital asset management (DAM) system is fundamental to maintaining any significant collection of digital images. Images that were originally taken with film can be converted to digital images through scanning.

In 2004, GIA’s Visual Resources Library, in conjunction with committees of members from various departments throughout the Institute, launched a plan for an enterprise-wide DAM system to manage the increasing number of digital images being generated and acquired.

The key to successful implementation lies in planning the policies and procedures. The first step is to assess the needs of the individual or business (in this case, GIA) and examine the current image archiving methods. How many images are there now and how large will the collection grow? How many people need access? Who will the users be and what is their level of technical expertise? Will the system need to be accessed from multiple locations? Is there a need to restrict access to certain images? What is the budget? These are just some of the questions that need to be answered before searching for the right software solution and the required computer equipment and peripherals.

Another step in the planning process is to consider the metadata requirements for the images. “Metadata” means “data about data.” Information is vital to identify the content of an image, provide useful details such as the photographer and copyright information, and communicate other physical attributes related to the image. A list of the required metadata fields should be compiled in a thesaurus to use as keywords to aid in the retrieval of assets in a search of the database.

Cross-referencing Identification System (CIS): Database and Tool for Diamond Research

Branko Deljanin (brankod@eglcanada.ca)1 and Dusan Simic2
1European Gemological Laboratory, Vancouver, Canada; 2EGL USA, New York

The growth of the EGL USA Group and its opening of new laboratories in North America have created a need for better communication and databases for rough and polished diamonds coming to our labs for testing. The basic idea is to store all data (identification number, weight, size, shape, screening results with DiamondSure, color, clarity, fluorescence, UV-Vis-NIR absorption, FTIR, photoluminescence [PL], and cathodoluminescence [CL] spectra, along with other necessary advanced tests, as appropriate) in one system called the Cross-referencing Identification System (CIS). The system will be interactive and will enable the searching and cross-referencing of data. It will permit statistical analysis of each of the cate-
categories. For example, it could easily calculate the percentage of each characteristic that is present in the diamonds tested by the laboratories.

There are three levels of the CIS system:

- **Level I: ABCD (4 groups)** contains basic information, fluorescence, and absorption testing in the visible region of the spectrum. This level is sufficient to positively identify, for example, most yellow diamonds with cape lines.
- **Level II: A12–D21 (8 groups)** contains, in addition to the data from Level I, FTIR and UV-Vis-NIR absorption data. Level II is sufficient for the identification of all cape diamonds, as well as most irradiated, type Ia HPHT-treated, and synthetic diamonds.
- **Level III: A1–D1 (16 groups)** is the highest level of identification and will record, in addition to the data from Levels I and II, the amount of impurities, PL spectra, “hot” CL, photo of “cold” CL, chemical analysis with X-ray fluorescence (XRF), as well as photography in visible light, UV radiation, and under crossed polarizers. Data collected at this level makes it possible to identify all treatments of diamonds and all synthetic diamonds.

The goal of this new system is to standardize communication both within EGL USA group and internationally, and to increase the database chronicling old and new treatments of natural and synthetic diamonds.

International labs with advanced instruments also could connect with the CIS system and exchange “virtual samples” to increase the database and detect more treatments and synthetics. Diamond mining companies, diamond manufacturers, wholesalers, and retailers would benefit by the increased confidence in selling their products with proper disclosure.

Challenger Gemological Spectrometer

Nick Michailidis (igimfg@adelphia.net)

Imperial Gem Instruments, Santa Monica California.

The Challenger gemological spectrometer is designed for colored gemstone and diamond identification (see figure). Certain wavelengths of light passing through transparent or translucent material are absorbed due to the chemical structure of the material. Each material has a signature that is as unique and identifiable as a human fingerprint.

The spectrum with a conventional spectroscope is viewed with the naked eye and limited to the visible spectrum (400–700 nm). Imperial Gem Instruments developed the Challenger gemological spectrometer to eliminate the limitations of the visual spectroscope. It increases the viewing spectrum range from 370 nm in the near-ultraviolet to 1000 nm in the near-infrared region.

The optical system of the Challenger is interfaced with a high-resolution black-and-white video camera to display the spectrum of a gemstone on a black-and-white monitor. As the spectrum is scanned from 370 nm to 1000 nm, a digital meter displays the wavelength reading. Although a color spectrum is more desirable, color video cameras have an internal filter to view only the visible spectrum. In addition, a color video camera and monitor has 380–420 lines resolution compared to 900–1000 lines resolution for a black-and-white monitor. The Challenger can display many absorption or fluorescence bands not visible with a conventional spectroscope as well as reveal the presence of multiple bands grouped together.

The Challenger is a simplified spectrophotometer designed to identify gemstones and diamonds by viewing the spectrum on a monitor rather than having to print out and read a spectrum curve. Also, the price is many times less than that of a spectrophotometer.

The Challenger has the capability to detect many features of gemstones including:

- Rhodochrosite’s spectrum has a dark band from 405 to 415 nm followed by three bands at 385, 390, and 398 nm. The conventional spectroscope shows a cutoff at 415 nm.
- Red spinel has 13 absorption and fluorescence bands ranging from 685 to 721 nm. Only two or three fluorescence bands from 685 to 700 nm are observed in a conventional spectroscope.
- Irradiated diamonds often have an absorption band at 741 nm, which is beyond the range of a conventional spectroscope.
- Beryl has a weak band at 920 nm and a stronger band at 956 nm. Synthetic emeralds do not have these bands.
- Golden Imperial topaz has a weak band at 962 nm.

A synthetic Nd:YAG specimen is tested using the Challenger gemological spectrometer. The monitor shows the presence of numerous absorption and fluorescent lines that aid in identifying the stone. Photo by Nick Michailidis.
• White jadeite with greenish speckles shows bands at 430 and 437 nm and a chromium-related band at 690 nm. The conventional spectroscope shows only the 437 nm band.

Silicosis Risks for Lapidary Workers in Developing Countries
Thomas W. Overton (tom.overton@gia.edu)
GIA, Carlsbad

Silicosis is an incurable disease of the lungs caused by inhalation of crystalline silica dust. As these crystals tend to be long and narrow, they lodge in the lung tissue, gradually sinking to the lower half of the lungs. Scarring, inflammation, and fibrosis of lung tissue typically result. Over several years’ exposure, this will progressively debilitate normal lung functions, causing chronic cough, shortness of breath, weight loss, breathing difficulties, and, in severe cases, death. Secondary tuberculosis is also common among those suffering from silicosis, as the presence of silica dust is believed to interfere with the body’s immune response to the TB bacillus.

Long a bane of the mining, glass-making, and stone-working industries, silicosis has also been recognized as a risk for lapidary workers. Both quartz (e.g., amethyst, citrine, chalcedony) and opal are forms of silica and will produce silica dust during manufacturing. Typically, the sawing and grinding stages produce more airborne dust than faceting/polishing because of the coarser tools used.

Silicosis is perhaps the world’s oldest occupational disease, and the dangers of long-term inhalation of silica dust have been known since the 19th century. Western countries such as the United States have enacted strict workplace safety regulations to protect workers who may be at risk, and western lapidaries typically have easy access to inexpensive protective gear. However, protections for lapidary workers in developing countries have been uneven, and safety regulations, if any, are often poorly enforced (see figure).

A number of recent studies have indicated that silicosis is a major occupational hazard in the gem manufacturing industry of Guangdong Province, China. Efforts to protect and compensate workers have encountered stiff resistance from factory owners and government authorities. However, attention to this issue among trade organizations and health ministries is increasing, and some improvements have been noted by these groups.

Similar problems have been reported in the gem polishing industries of India and Brazil. One recent study of a group of Brazilian stone carvers reported a 53.7% prevalence of silicosis.

The risks of silicosis can be greatly reduced by a number of preventative measures. These include: training workers to be mindful of the risks of dust inhalation; issuing protective masks and clothing; proper ventilation; frequent cleaning of work areas; the use of water during polishing; proper maintenance and operation of polishing equipment (dull tools and excessive polishing speeds can generate more airborne dust); and regular monitoring of worker health.

Subjectivity in Gemology
Ronald Ringsrud (ron@emeraldmine.com)
Ronald Ringsrud Co., Saratoga, California

The analytical mind cannot encapsulate the full experience of viewing a beautiful gem. The detailed objective perceptions of the intellect are supplemented by another style of perception—that of subjective perception. It is holistic and devoid of the mental activity of analysis. Connoisseurs of gems develop the ability, during a lifetime of viewing fine gems, to go beyond the boundaries of the intellect and witness the glorious aesthetics that a fine gemstone has to offer. From a physiological standpoint, this could be called shifting from brain activity dominated by the left hemisphere (responsible for analysis and discrimination) to that of the right hemisphere (contextual and nonverbal functions).

Gemology’s fullest expression as a discipline is exemplified when both objective and subjective approaches are used. Therefore, physics, optics, and chemistry are taught in gemological institutes alongside history, romance, and folklore. The work of gemologist Dr. Edward Gübelin expressed not only objective science but also subjectivity: gemstone certificates from his laboratory had the usual page of objective determinations for the gemstone, but also a page of subjective description outlining the beauty, uniqueness, and rarity of the gem.

Dr. Gübelin went on to encourage work in the use of poetry to describe gemstone aesthetics, which, in an industry sustained by the romancing sale of gemstones, should be recognized as worthy of the highest endeavor.
Frederick Kunz decried the arbitrary alteration of the birthstone chart by an association of jewelers in 1912. He recognized the multicultural reality that gemstones are special to people born on certain months. Modern understanding of an ancient eastern astrological system shed new light on this. Practitioners of traditional Asian medicine prescribed gems not only as talismans but also as pharmaceuticals.

Gemology is perhaps more suited to address subjectivity than other sciences simply because its focus, gemstones, involves the complete expressions of the highest subjective qualities: allure, fineness, attraction, timelessness, glamour, and charm. The role of subjectivity in gemology is interdisciplinary and should elevate our expectations of future gemologists and gemstone dealers.

Exploring the Variances of Color System Terminology
Howard Rubin (GemDialogue@aol.com)
Abstract withdrawn.

Gemstone Marketing
Giving Back Wisely: Philanthropy as an Investment for Retail Jewelers
Jerry Buckley (jerrybuckley17@aol.com)
BUCKLEY Consulting, Solana Beach, California
There is a long tradition of “giving back” to the community by members of the jewelry industry. Today, many worthwhile causes seek support from local family jewelry stores, regional and national chains, as well as the global luxury brands. But too often, philanthropic decisions are made based on criteria such as “Who’s asking?” and “How much will it cost me?” rather than a carefully defined plan.

With so much competition in the marketplace, retail jewelers have an opportunity to create relationships with charitable organizations based upon their civic, spiritual, and cultural values while at the same time securing strategic advantages in marketing and public relations.

The key to success in maximizing the value of a gift to a charity and the positive marketing impact of corporate contributions is to create an annual philanthropic plan and budget. Determine precisely why and where you want your company name associated with a charity. The answers will guide you to the types of organizations to support. Museums, preparatory schools, and arts groups all have followings that may fit the demographics you wish to reach. You have a right to request information about the frequency and methods by which your company name will be featured. In addition, it is vital to know the individuals that you will encounter at special events, meetings, or exhibitions.

Careful thought also should be given to ways to feature in-store events that allow other donors to check out your goods. Possibilities include a small attractive memento with your company name or a drawing for a special item.

The charity should prepare a formal proposal with all of the benefits that your business will receive. If you have ideas for other benefits, suggest your ideas in addition to those listed by the charity. Finally, have the charity prepare a written pledge agreement that includes the gift amount, the benefits you will receive, a payment schedule, and the amount that is a tax-deductible gift.

Marketing in the 21st Century
Pam Welborn (Pam.Welborn@austin.rr.com)
The Color Source, Austin, Texas
In the 21st century, successful companies will have to bring their products to market efficiently. In the jewelry industry, this trend will favor those companies whose capabilities include gem rough sourcing, as well as in-house cutting, design, and manufacturing operations, and even distribution channels. Such companies can control quality and cost at every stage of production and will provide savings in terms of lower per-unit costs. Also, by controlling the design function and by associating with trusted partners in foreign markets, such companies can tailor their jewelry products to reflect the distinctive cultural designs of those markets for greater acceptance and sales. The Internet can also be used to post an online catalog of jewelry items, sell the products, and facilitate a rapid delivery service to the targeted market.

The increased efficiency of all these efforts will shorten the delivery time from the manufacturing center to the end consumer. A higher level of contact with the consumer using the Internet and call centers, located in favorable labor countries, will decrease response time and increase customer satisfaction.

Such companies are Internet savvy, computer driven, and focused on high quality standards of manufacturing. They are able to produce jewelry items for a specialized, niche market as well as produce a limited edition or an exclusive design for a national market. Global opportunities are limited for most companies. Therefore, a major upheaval in the next 10 years is likely as the jewelry industry adapts to this new paradigm.

Jewelry
Products of Endangered Species Used in Jewelry
Charles I. Carmona (cicarmona@aol.com)1 and Jo Ellen Cole2
1Guild Laboratories, Inc, Los Angeles, California; 2Cole Appraisal Services, Vista, California
The historic use of gem materials derived from endangered species used in jewelry and objets d’art has contributed to precipitous declines in the populations of many animal species, the greatest of which occurred in the decades of the 1970s and 1980s. The convergence of an increasing demand for ivory, coupled with heavier firepower and greater access for poachers, led to estimated drops in elephant populations of 50% and in rhinoceros populations of 90% during these decades.

To deal with this manmade ecological catastrophe, the United Nations in 1973 initiated the Convention on...
International Trade in Endangered Species (CITES). Beginning with just a few dozen signatories in the early 1970s, restrictions on the international trade in endangered species have now been agreed to by 169 nations. Of the three-part treaty, Appendix I lists species currently threatened with extinction and Appendices II and III list species that are not currently threatened, but may become so if trade is not closely controlled.

In 2006, we can see positive signs of progress in the last 15 years. Jewelers in the western world have nearly eliminated animal ivories from their inventories, replacing them with vegetable ivories, bone, or simulants. Other threatened species among birds, turtles, corals, and wild mollusks have not fared quite as well.

The difficult questions that we face at the beginning of the new millennium relate to balancing the survival of some species with the reality of the trade in their products. Ivory is the most recognizable product of endangered species used in jewelry, and its regulation has elicited broad international public support.

Brazilian Colored Gemstones in Portuguese 18th–19th Century Jewelry
Rui Galopim de Carvalho (ruigalopim@labgem.org)
Labgem, Sintra, Portugal

Although much has been written about the secondary diamond deposits discovered in the mid-1720s near Diamantina, Brazil, there has been little mention of the numerous and various colored gemstones that started to emerge from various parts of Brazil in the mid-18th century, mostly from Minas Gerais.

Since the beginning of the colonial age in the 16th century, famous explorers made several incursions into the interior of Brazil. They focused on the search for precious materials (e.g., gold, diamonds, and emeralds) but had little success compared to the rich emerald resources of the New Granada territories in present-day Colombia. However, these campaigns eventually discovered significant quantities of other colored gemstones and gold. When these gems arrived in Europe, they found a privileged niche in Portuguese jewelry. In addition to the famous Imperial topaz that is known to have been discovered in the Ouro Preto mining region in the mid-1700s, large quantities of amethyst, mostly of light tones, were extensively used in Portugal in the 18th century. Some had a colored foil backing to enhance their color appearance. At the same time, a yellow-green chrysoberyl, locally known as “crisolita,” also became popular. It was sometimes used in conjunction with topaz, creating a rather typical motif (see, e.g., figure). Colorless topaz in large quantities, along with colorless quartz (rock crystal), had an even greater impact in silver jewelry, especially in closed settings with reflective foil backings. In these jewels, colorless gem culets were sometimes painted with a black dot to simulate a brilliant diamond. The design of these jewels was quite similar to diamond jewelry of the same period. These topaz- and quartz-set jewels were probably intended to be lower-cost alternatives to diamond-set jewelry.

With the influx of the Brazilian gemstones, gem-set jewelry changed completely, specifically in Portugal but also elsewhere in Europe, due to the massive amount and variety of new colored gems. Jewelry became multicolored, sparkling pieces that had noble metals serving mostly as a skeletal support.

Colored Gemstone Promotion in Small Scale Markets: The Portuguese Case
Rui Galopim de Carvalho (ruigalopim@labgem.org)
Labgem, Sintra, Portugal

Despite Portugal’s discovery of the sea route to India in the 16th century and the gem finds in Brazil in the 18th century, Portugal today has essentially no gem industry tradition. Portuguese consumers and trade professionals do not possess much gem-related knowledge. Portugal’s national jewelry industry, though strong in its manufacturing sector, has weak response from domestic consumers, especially in comparison...
to competition from other luxury goods. This makes promotion of the industry essential.

With the support of the International Colored Gemstone Association (ICA), many activities have been created with the goal of establishing a long-term strategy to promote colored gemstones in Portugal. Out of necessity, these activities needed a low budget, yet they required commitment and strong public relations work to inspire the involvement of others. A few examples follow:

- The ICA Digital Slide Library, a resourceful photo archive, was extensively used to illustrate articles in the general and trade press as well as gemological communiqués and other releases. The local trade associations, two manufacturing and two retailer organizations, and two trade magazines (Comercio de Lisboa and Jóias de Família), published those stories, spreading the word of color among their public and trade audiences.

- ICA-sponsored seminars were held at Portojóia, the biggest national trade show in Portugal, discussing matters such as new gem treatments, disclosure, communicating and using color, from designer to the consumer. Similar events occurred during the 2006 show in September. Winning posters from ICAs 2005 Poster Competition were on display to inspire new designers to participate in the forthcoming competition in 2007 in Dubai.

- Museum guided tours brought jewelry students, teachers, and the public to their collections, showing the use of gemstones from medieval times through today. More than 20 lectures were provided on these topics, often emphasizing Portuguese history.

- ICA is collaborating with embassies of gem producing and processing countries to co-host events focusing on those resources, while also promoting their culture, tourism, and economy and creating a networking platform for their national companies to do business in Portugal.

For this promotional strategy, spreading the word about colored gemstones is the most important aspect. Synergies in other parts of society, including the press, as well as educating the consumer about colored gemstones and nurturing the next generation of jewelry designers, are critical to creating an adequate infrastructure to increase jewelry awareness.

Magnificent Jewels in Portugal

Rui Galopim de Carvalho (ruigalopim@labgem.org)

Labgem, Sintra, Portugal

Little is known internationally about the jewelry and gem wealth of Portugal. While Portugal never had domestic gem mining activity, the significant collection of religious, royal, and civil jewelry surely deserves introduction to the international gem community. This poster showcases seven magnificent jewels in Portuguese collections that have had few opportunities to be presented to a wide audience.

The Reliquary of the Holy Cross, made in 1699 in silver and gold, decorated with enamel, displays in the top a relic of the Holy Cross. This magnificent devotional piece is set with more than 800 rose-cut and small table-cut diamonds, 105 fine Colombian emeralds, and more than 400 Burmese rubies, red spinels, and rose-cut blue Ceylon sapphires. The Ecce Homo hessonite garnet fine carving is on the back of the piece. © Museu de Arte Sacra da Sé de Évora, courtesy of the Archdiocese of Évora.
18th century, possibly of religious application, now at the Museu Nacional Soares dos Reis, Oporto. This piece is set with more than 1,600 cut stones, including Imperial and colorless topaz, amethyst, colored foil–backed quartz, and chrysoberyl.

Among the nonreligious pieces, the tobacco box (ca. 1756) of the Portuguese king José I is one of the finest examples of mid-18th century French goldsmith work. The piece has delicate chisel artistic work and is set with large diamonds and buff-top emeralds; it is part of the Royal Treasures at the Palácio Nacional da Ajuda in Lisbon. Also in this collection is the mid-19th-century Star Necklace of Queen Maria Pia made by Portuguese goldsmith Estevão de Sousa; it is set with diamonds and is notable for its unique design and fine workmanship. A collection by renowned French artist René Lalique at the Calouste Gulbenkian Foundation is plentiful and includes the dragonfly corsage ornament (ca. 1897–98), which is made in gold and enamel and set with chrysoprase, moonstone, and diamonds.

Gemological Needs in Insurance Documentation

David W. Hendry, Jr. (dhendry@jcrs.com)
JCRS Inland Marine Solutions, Inc., Oakland, California

The key problem associated with jewelry insurance is that insurers have no reliable source for the quality and accuracy of the documentation used for making insurance decisions. Whatever documentation is provided originates with the jeweler or appraiser, is given to the agent by the insurance customer, and then ripples through the submission, underwriting, policy issuance, and claims processes. Whatever determinations are made are only as good as the original information and then acted upon based on the training, knowledge, and know-how of the insurers using it.

The problem of accurate jewelry documentation has two major causes. First, jewelers and appraisers are part of an unregulated industry that is represented by various organizations, among which there is little consensus or uniformity concerning professional qualifications, specialized training, certifications, or licensing procedures. Second, insurers are largely untrained and unaware of critical jewelry and appraisal issues, despite the existence of jewelry insurance appraisal standards.

This problem is easily illustrated by a particular practice of a well-known “big box” retailer that sells high-value jewelry. While basic descriptions, quality, and pricing of certain items seem generally accurate, the items are typically sold with an accompanying “appraisal” that states a value at twice the purchase price. Although the customer may have received “a really good deal,” the untrained agent—and every other untrained insurance professional in the chain—does not question the accuracy of the appraisal.

One remedy to the documentation problem can come from the insurance industry itself. For several years, uniform appraisal standards and forms have been available. Originally known as ACORD forms, the developer recently made these forms freely available to all insurers, jewelers, and consumers as can be viewed at www.jiso.org. These forms ask for more than the obvious and cursory information. Precise gemological descriptions and measurements of table percentage, crown angle, girdle thickness, pavilion percentage, and culet size are necessary for preparing accurate and complete appraisals that can meet insurance industry standards.

The use of standard appraisal forms increases insurance industry understanding and effectively communicates important technical details in a manner that insurers will instantly recognize. Jewelers, appraisers, and insurers who use high-quality jewelry insurance documentation can properly insure jewelry, confidently settle claims, and cultivate trust and cooperation between insurers and jewelers and their mutual customers.

Pearls

Natural Pearl Formation as Seen Through Macro Photography

K.C. Bell (KCBnaturalpearls@cs.com)
KCB Natural Pearls, San Francisco, California

The formation of natural pearls is usually provoked by the arrival of an invading parasite into the host mollusk, followed by a natural survival response by the mollusk. This parasite will either enter the host mollusk when the shell is open or by boring through the shell from the outside. If the mollusk is unable to stop the invasion upon penetration of the shell by secreting fresh layers of nacre (thereby creating a blister-shaped pearl on the interior of the shell), the invading parasite may continue to live in the shell of the host. If the parasite penetrates and enters the interior of the shell, the mollusk will try to encase the living invader in layers of pearl nacre (see figure).

Often this parasite will decompose during the pearl forming process. The end of this process is often evident as a darkish coloring on the central nacreous layers of the pearl. Other
times, this encasing and subsequent decaying process leads to a gaseous void in the interior of the pearl where evidence of the original parasitic stimulus can be seen. From the outside looking in, the invader is clearly seen encased in pearly nacre.

On rare occasions, young pearls with early nacreous layers can be found where the parasite is recognizable within the pearl “sarcophagus.” The final evidence of this natural pearl process is clearly seen with macro photography.

Photographs of half-cut natural oriental pearls, abalone pearls, and other pearl species often illustrate nacre growth lines surrounding the pearl’s center, physical structure, parasite habitation of shells, and parasites encased in pearly nacre. The images also show the evidence of parasitic stimulation usually needed for natural pearl formation.

Marketing of the Tahitian Cultured Pearl

Raitu T. Galenon (raitu.galenon@perlesdetahiti.net)

GIE Perles de Tahiti, Papeete, French Polynesia

The official recognition in 1976 by GIA contributed to verifying the natural color authenticity of the Tahitian cultured pearl, and the adoption by the World Jewellery Confederation (CIBJO) of the trade name Tahitian Cultured Pearl. This has made it possible for this jewel to establish an international reputation.

The Tahitian cultured pearl industry was prosperous in the early 1980s. This caused many individuals in the fishing industry to try the pearl farming business. It was similar to the California gold rush. Until 1997, the business was profitable because there were not enough pearls on the market.

Unfortunately, the combined situation of the world economy and overproduction in French Polynesia had a negative impact on the market for Tahitian cultured pearls. Pearl sales could not cover the costs of production anymore, and many pearl farmers went bankrupt. The official figures from the Pearl Cultured Ministry show that of the 2,700 pearl farms registered in 1998, only 800 remained in activity at the end of 2005. Half of them are shell producers, the other half produce cultured pearls.

The French Polynesian government, to ensure the stability of production and a quality standard for the Tahitian cultured pearl, has implemented the following regulations since 2001:

- Limitation of pearl farming concessions
- Limitation of production and export licenses
- Shutdown of the pearl-culturing activity in certain lagoons
- Strict control of a minimum thickness of nacre (0.8 mm) on all exported pearls

These regulations combined with a good marketing program conducted worldwide by a nonprofit economic interest group, “Perles de Tahiti,” have resulted in an overall increase in the Tahitian cultured pearl trading price, as shown in the table.

These official figures from the French Polynesian Statistics Institute relate the history of the loose Tahitian cultured pearl market, from the general decrease in prices through 2003 to the rebound of the industry in 2005, when production leveled and the trading price stabilized.

Pearl-culturing activity in French Polynesia has a major economic and social impact. With the development strategy implemented by the government and the support of various local and international companies, the long-term future looks promising.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1994</td>
</tr>
<tr>
<td>1995</td>
</tr>
<tr>
<td>1996</td>
</tr>
<tr>
<td>1997</td>
</tr>
<tr>
<td>1998</td>
</tr>
<tr>
<td>1999</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>2001</td>
</tr>
<tr>
<td>2002</td>
</tr>
<tr>
<td>2003</td>
</tr>
<tr>
<td>2004</td>
</tr>
<tr>
<td>2005</td>
</tr>
</tbody>
</table>